Những câu hỏi liên quan
DF
Xem chi tiết
H24
Xem chi tiết
TG
1 tháng 11 2021 lúc 16:32

Theo tớ là tìm Min chứ nhỉ ??

Bình luận (1)
NL
1 tháng 11 2021 lúc 16:54

\(ab\left(a+b\right)=a^2+b^2-ab\Rightarrow ab=\dfrac{a^2+b^2-ab}{a+b}\)

\(A=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)\left(a^2+b^2-ab\right)}{a^3b^3}=\dfrac{\left(a+b\right)ab\left(a+b\right)}{a^3b^3}=\dfrac{\left(a+b\right)^2}{a^2b^2}\)

\(=\left(\dfrac{a+b}{ab}\right)^2=\left(\dfrac{a+b}{\dfrac{a^2+b^2-ab}{a+b}}\right)^2=\left(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\right)^2\)

Ta có: \(a^2+b^2-ab>0;\forall a;b\ne0\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\ge0\)

\(\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}=\dfrac{a^2+b^2+2ab}{a^2+b^2-ab}=\dfrac{4\left(a^2+b^2-ab\right)-3\left(a^2+b^2-2ab\right)}{a^2+b^2-ab}=4-\dfrac{3\left(a-b\right)^2}{a^2+b^2-ab}\le4\)

\(\Rightarrow0\le\dfrac{\left(a+b\right)^2}{a^2+b^2-ab}\le4\)

\(\Rightarrow A\le16\)

\(A_{max}=16\) khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)
NC
Xem chi tiết
NL
22 tháng 2 2021 lúc 0:55

\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)

\(\Rightarrow a^2+b^2\le8\)

\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)

Bình luận (0)
DF
Xem chi tiết
TH
14 tháng 1 2021 lúc 10:22

Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).

Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).

Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).

\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).

Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\)\(9t^3-9t^2+4t+12>4t+12>0\).

Nên \(P\ge\dfrac{28}{9}\).

Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.

Vậy...

 

Bình luận (0)
TK
Xem chi tiết
NL
27 tháng 12 2020 lúc 23:29

\(\dfrac{4}{3}=a+2\sqrt{\dfrac{a}{4}.b}+\dfrac{1}{2}\sqrt[3]{\dfrac{a}{2}.2b.8c}\)

\(\dfrac{4}{3}\le a+\dfrac{a}{4}+b+\dfrac{1}{6}\left(\dfrac{a}{2}+2b+8c\right)=\dfrac{4}{3}\left(a+b+c\right)\)

\(\Rightarrow a+b+c\ge1\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{16}{21};\dfrac{4}{21};\dfrac{1}{21}\right)\)

Bình luận (1)
BB
Xem chi tiết
MD
Xem chi tiết
TH
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Bình luận (0)
NL
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
BB
Xem chi tiết
NL
5 tháng 10 2021 lúc 20:10

\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)

\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)

Dấu "=" xảy ra khi \(a=b=2\)

Bình luận (0)
LS
Xem chi tiết