Giải phương trình:
(9x2-6x)2+2(3x-1)2=17
Giải phương trình: \(x^4-3x^3-6x^2+3x+1=0\)
Nhận thấy x = 0 không phải là nghiệm.
Xét x khác 0.Chia hai vế của pt cho x2 ta được:
\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=a\). PT trở thành:
\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)
Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)
Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )
Giải phương trình: \((3x+4)(x+1)(6x+7)^2=6\)
\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)
Đặt \(3x^2+7x=a\Rightarrow36x^2+84x=12a\)
\(\left(a+4\right)\left(12a+49\right)-6=0\)
\(\Leftrightarrow12a^2+97a+190=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-\frac{10}{3}\\a=-\frac{19}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2+7x+\frac{10}{3}=0\\3x^2+7x+\frac{19}{4}=0\end{matrix}\right.\) \(\Leftrightarrow...\)
giải phương trình: \(10X^2+3X+1=\left(6X+1\right)\sqrt{X^2+3}\)
Giải phương trình :
\(x^2-2\left(x+1\right)\sqrt{x^2-1}-3x^2+6x-1=0\)
ĐK: \(x^2-1\ge0\)
pt <=> \(\left(x^2+2x+1\right)-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)-4x^2+4x-1=0\)
<=> \(\left[\left(x+1\right)^2-2\left(x+1\right)\sqrt{x^2-1}+\left(x^2-1\right)\right]-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-\sqrt{x^2-1}-2x+1\right)\left(x+1-\sqrt{x^2-1}+2x-1\right)=0\)
Phương trình tích. Dễ rồi đúng ko? Tự làm tiếp nhé!
Giải phương trình: \(2(2x^2+6x+5)-\frac{10}{x^2+3x+2}\)
Giải phương trình: \(2(2x^2+6x+5)-\frac{10}{x^2+3x+2}=5\)
Lời giải:
ĐKXĐ: $x\neq -1; x\neq -2$
PT \(\Leftrightarrow 2(2x^2+6x+4)+2-\frac{10}{x^2+3x+2}=5\)
\(\Leftrightarrow 4(x^2+3x+2)-\frac{10}{x^2+3x+2}-3=0\)
Đặt \(x^2+3x+2=a\). Khi đó PT trở thành:
\(4a-\frac{10}{a}-3=0\)
\(\Rightarrow 4a^2-3a-10=0\)
\(\Leftrightarrow (a-2)(4a+5)=0\Rightarrow \left[\begin{matrix} a-2=0\\ 4a+5=0\end{matrix}\right.\)
Nếu \(a-2=0\Leftrightarrow x^2+3x+2-2=0\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x(x+3)=0\Rightarrow \left[\begin{matrix} x=0\\ x=-3\end{matrix}\right.\)
Nếu \(4a+5=0\Leftrightarrow 4(x^2+3x+2)+5=0\)
\(\Leftrightarrow 4x^2+12x+13=0\)
\(\Leftrightarrow (2x+3)^2=-4< 0\) (vô lý- loại)
Vậy.........
Giải phương trình :
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))
\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)
\(\Leftrightarrow-56x=1\)
\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)
Vậy \(S=\left\{-\frac{1}{56}\right\}\)
ĐKXĐ: x khác -7 và 3/2
Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)
<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7
<=> -13x+6 = 43x+7
<=> 6-7 = 43x+13x
<=> 56x = -1
<=> x = -1/56 (TM)
Vậy ...
ĐKXĐ:x khác -7;x khác 1,5
=>(3x-2)(2x-3)=(6x+1)(x+7)
=>6x2-4x-9x+6=6x2+x+42x+7
=>6x2-13x+6=6x2+43x+7
=>6x2-6x2-13x-43x+6-7=0
=>-56x-1=0
=>-56x=1
=>x=\(\frac{-1}{56}\)
Giải phương trình \(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
giải phương trình(tìm x)
6x2-(2x+5)(3x+7)=7