Những câu hỏi liên quan
Xem chi tiết
H24
6 tháng 4 2018 lúc 13:55

x-y=0 => x=y Mà x+y=4 nên x=y=2

=> \(B=2^2-2.2.2+2.2=4-8+4=0\)

Vậy B=0

Bình luận (0)
NL
Xem chi tiết
NK
12 tháng 3 2017 lúc 20:21

Ta có:  \(x-y=6\)  \(\Rightarrow\)\(x=6+y\)
Thế \(x=6+y\) vào biểu thức \(x+y=4,\)  ta được  \(6+y+y=4\)   
      \(\Rightarrow\) \(6+2y=4\) \(\Rightarrow\)          \(y=\frac{4-6}{2}=\frac{-2}{2}=-1\)
Thế  \(y=-1\) vào biểu thức \(x+y=4,\)ta được  \(x+\left(-1\right)=4\)
                                                                                              \(\Rightarrow\)\(x=4-\left(-1\right)=5\)
Thế \(x=5\)và \(y=-1\)vào biểu thức \(B\),
 ta được:   \(B=5^2-2.5.\left(-1\right)-2.\left(-1\right)^2\)
                   \(B=25-\left(-10\right)-2\)
                   \(B=25+10-2=33\)
Vậy giá trị của biểu thức \(B\)tại  \(x=5\)và \(y=-1\)là \(33\)

Bình luận (0)
BM
12 tháng 3 2017 lúc 20:03

.Cộng cả hai vế của biểu thức x-y=6 và x+y=4, ta có:

(x-y)+(x+y)=6+4 => x-y+x+y=10 => 2x=10 => x=10:2 => x=5.

Thay x=5 vào biểu thức x-y=6, ta có:

5-y=6 => y=5-6 => y=-1.

thay x=5;y=-1 vào biểu thức B, ta có:

x2-2xy-2y2= 52- 2.5.(-1) - 2.(-1)2=25 +10 - 2= 33

Bình luận (0)
QD
Xem chi tiết
LA
Xem chi tiết
CN
27 tháng 8 2016 lúc 21:03

kinh nhờ học nhà thầy Khánh à ?

Bình luận (0)
HH
27 tháng 8 2016 lúc 21:20

mấy bạn biết thầy Khánh ak thầy mk đó

Bình luận (0)
KP
Xem chi tiết
NT
21 tháng 3 2023 lúc 23:38

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

Bình luận (0)
LL
Xem chi tiết
H24
11 tháng 8 2020 lúc 16:26

Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!

a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)

<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)

<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\)    (1) 

TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)

=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\)      (2)

TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

VẬY \(\left(x;y\right)=\left(3;2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
MT
5 tháng 10 2019 lúc 20:59

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

Bình luận (0)
MT
5 tháng 10 2019 lúc 21:02

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

Bình luận (0)
EC
5 tháng 10 2019 lúc 21:02

a) 2x2 + y2 + 2xy + 10x + 25 = 0

=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0

=> (x + y)2 + (x + 5)2 = 0 

    <=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)

b)c) xem lại đề

Bình luận (0)
PC
Xem chi tiết
PL
12 tháng 4 2021 lúc 20:06

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
HD
6 tháng 4 2017 lúc 11:47

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)

\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)

\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)

\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(M=x^2.0+y.0+0+1\)

\(M=1\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)

\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)

\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)

\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

\(N=x^2.0-xy.0+2.0+2\)

\(N=2\)

\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)

\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)

\(P=x^3.0+x^2y.0-x.0+3\)

\(P=3\)

Tích mình nha!hahahihi

Bình luận (1)
HD
6 tháng 4 2017 lúc 11:49

Mà bài này hình như học ở lớp 7 rồi!lolang

Bình luận (0)
NH
Xem chi tiết
H24
11 tháng 7 2017 lúc 23:36

a/ (x^2-4x+4)+(y^2+2y+1)=0

<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1

b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0 

<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1 

Bình luận (0)
NC
12 tháng 7 2017 lúc 6:00

a) { x^2 - 4x +4 } +{y^2+2x+1}=0

<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1

b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}

<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.

NHA BẠN!

Bình luận (0)