Cho 2 số x,y thỏa mãn điều kiện x+y=2. Cminh x^4+y^4 >= 2
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
cho 2 số dương x;y thỏa mãn điều kiện: \(x+y\le1\)
chứng minh: \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le\dfrac{-9}{4}\)
Ta có \(x+y\le1\Leftrightarrow1-x\ge y>0\Leftrightarrow0< x< 1\)
Giả sử \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le-\dfrac{9}{4}\)
\(\Leftrightarrow4x^2+9\le\dfrac{3}{x}+\dfrac{4x}{y}\\ \Leftrightarrow\dfrac{4x}{1-x}+\dfrac{3}{x}\ge4x^2+9\\ \Leftrightarrow\dfrac{4x^2+3\left(1-x\right)-x\left(4x^2+9\right)\left(1-x\right)}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{4x^4-4x^3+13x^2-12x+3}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{\left(x^2+3\right)\left(2x-1\right)^2}{x\left(1-x\right)}\ge0\)
Vì \(x>0;1-x>0\) nên BĐT trên luôn đúng
Vậy ta được đpcm
Dấu \("="\Leftrightarrow x=y=\dfrac{1}{2}\)
chứng minh bát đẳng thức cho 2 số x, y thỏa mãn điều kiện x+y=2. chứng minh rằng: x4+y4>=2
có : (x-y)2 \(\ge0,\forall x,y\)
==>x2-2xy+y2 \(\ge\)0 \(\forall x,y\)
==> 2.(x2+y2)\(\ge\)2xy +x2+y2 \(\forall x,y\)
==> x2+y2 \(\ge\)\(\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\) ( do x+y=2) \(\forall x,y\)
lại có (x2-y2)2\(\ge\)0\(\forall x,y\)
==> x4+y4-2x2y2 \(\ge\)0 \(\forall x,y\)
==> 2.(x4+y4) \(\ge\)2x2y2 + x4+y4 \(\forall x,y\)
==> x4+y4 \(\ge\)\(\dfrac{\left(x^2+y^2\right)^2}{2}\ge\dfrac{2^2}{2}=2\)
==> đpcm
dấu ''=,, xảy ra <=> \(\left\{{}\begin{matrix}x+y=2\\x-y=0\\x^2-y^2=0\end{matrix}\right.< =>x=y=1}\)
Cho 2 muối X, Y thỏa mãn điều kiện sau :
(1) X + Y -> Không phản ứng
(2) X + Cu -> Không phản ứng
(3) Y + Cu -> Không phản ứng
(4) X + Y + Cu -> Phản ứng
Hai muối X, Y thỏa mãn là :
A. Mg(NO3)2 và Na2SO4
B. NaNO3 và H2SO4
C. NaHSO4 và NaNO3
D. Fe(NO3)3 và NaHSO4
Giải thích: Đáp án C
H2SO4 đặc nóng có thể hòa tan Cu
=> chỉ có Đáp án C thỏa mãn
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Cho các số x,y thỏa mãn điều kiện:
\(2x^2+10y^2-6xy-2y+10=0\)
Hãy trị của biểu thức: A=\(\dfrac{\left(x+y-4\right)^{2018}-y^{2018}}{x}\)
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
cho 2 số x,y thỏa mãn điệu kiện x+y=2
Cm x^4+y^4>=2
Áp dụng Bất đẳng thức Bunyakovsky ta có:
\(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
\(\Leftrightarrow\)\(\left(x+y\right)^4\le4\left(x^2+y^2\right)^2\) (2)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Áp dụng Bất đẳng thức Bunyakovsky ta có:
\(\left(x^2+y^2\right)^2\le\left(1^2+1^2\right)\left(x^4+y^4\right)\)
\(\Leftrightarrow\)\(4\left(x^2+y^2\right)^2\le8\left(x^4+y^4\right)\) (1)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x^2=y^2\)\(\Leftrightarrow\)\(x=\pm y\)
Từ (1) và (2) suy ra: \(\left(x+y\right)^4\le8\left(x^4+y^4\right)\)
\(\Leftrightarrow\) \(16\le8\left(x^4+y^4\right)\)
\(\Leftrightarrow\) \(x^4+y^4\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
1. Cho x,y thỏa mãn : 3x+2y =13. Tìm GTNN của P=x2 + y2
2. Cho x,y,z là 3 số thỏa mãn điều kiện:\(\hept{\begin{cases}x+y+z=0\\x^2+y^2+z^2=14\end{cases}}\)
Tính giá trị của biểu thức A= 1+x4 + y4 + z4