Những câu hỏi liên quan
PH
Xem chi tiết
PH
Xem chi tiết
PH
Xem chi tiết
NV
Xem chi tiết
NL
2 tháng 1 2020 lúc 23:20

\(\Leftrightarrow2012^{\left|x-1\right|+y^2-1}.3^{2012}=3^{2012}\)

\(\Leftrightarrow2012^{\left|x-1\right|+y^2-1}=1\)

\(\Leftrightarrow\left|x-1\right|+y^2-1=0\)

Pt đã cho có vô số cặp nghiệm x;y thỏa mãn

Chắc bạn ghi nhầm đề

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
EC
3 tháng 8 2019 lúc 20:41

\(2012^{\left|x-2\right|+y^2-1}.3^{2012}=9^{1006}\)

=> \(2012^{\left|x-2\right|+y^2-1}=9^{1006}:3^{2012}\)

=> \(2012^{\left|x-2\right|+y^2-1}=1\)

=> \(2012^{\left|x-2\right|+y^2-1}=2012^0\)

=> \(\left|x-2\right|+y^2-1=0\)

=> \(\left|x-2\right|+y^2=1\)

Ta có: \(\left|x-2\right|\ge0\forall x\)\(y^2\ge0\forall y\)

=> \(\left|x-2\right|+y^2\ge0\forall x;y\)

Do x;y \(\in\)Z  => \(\left|x-2\right|+y^2\in Z\)

TH1: \(\hept{\begin{cases}\left|x-2\right|=0\\y^2=1\end{cases}}\) <=> \(\hept{\begin{cases}x-2=0\\y^2=1^2\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=\pm1\end{cases}}\)

TH2: \(\hept{\begin{cases}\left|x-2\right|=1\\y^2=0\end{cases}}\) <=> x - 2 = 1 hoặc x - 2 = -1 và y = 0 <=> x = 3 hoặc x = 1 và y = 0

Vậy ...

Bình luận (0)
DT
Xem chi tiết
H24
22 tháng 8 2016 lúc 22:00

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(a^2+b^2\right)^2}{a+b}\)
\(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^4+y^4+2x^2y^2\right)}{a+b}\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)
\(\Leftrightarrow x^4b^2+y^4a^2-2x^2y^2ab=0\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Leftrightarrow x^2b=y^2a\Leftrightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)
\(\Rightarrow\frac{x^{2010}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2\left(x^2+y^2\right)^{1006}}{\left(a+b\right)^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
 

Bình luận (0)
H24
22 tháng 8 2016 lúc 22:02

Nếu để ý thì bài này dùng coossi sờ vác ngay bước đầu sẽ ngắn đi rất nhiều 

Bình luận (0)
H24
22 tháng 8 2016 lúc 22:06

Sr mình hơi vội nên nhầm
Ở dòng đầu tiên mình viết nhầm \(x^2+y^2\) thành \(a^2+b^2\)
Bạn sửa hộ mình nhé 

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
H24
14 tháng 12 2018 lúc 4:36

\(x^2+y^2=1\Leftrightarrow\frac{^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\)

Theo tính chất tỉ lệ thức

\(\frac{x^2+y^2}{a+b}=\frac{x^2}{a}=\frac{y^2}{b}\left(a;b\ne0\right)\)

\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\left(\frac{x^2}{a}\right)^{1006}+\left(\frac{y^2}{b}\right)^{1006}=2.\left(\frac{x^2+y^2}{a+b}\right)^{2006}=\frac{2}{\left(a+b\right)^{2006}}\left(đpcm\right)\)

Bình luận (0)
VH
Xem chi tiết
H24
9 tháng 4 2017 lúc 15:34

đề phải ntn chứ \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\)

Bình luận (2)
H24
9 tháng 4 2017 lúc 22:15

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)(cauchy-schwarz)

dấu = xảy ra khi \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow bx^2=ay^2\)

Bình luận (0)