chứng minh rằng thương của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ
Đề bài: Chứng minh rằng:
a) Tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ
b) Tích của một số hữu tỉ khác 0 với một số vô tỉ là một số vô tỉ
c) Thương của một số vô tỉ với một số vô tỉ là một số vô tỉ
Trong 4 mệnh đề này mệnh đề nào đúng mệnh đề nào sai. Hãy chứng minh điều đó
Tổng 1 số vô tỉvới một số hữu tỉ là một số vô tỉ
Tích của một số vô tỉ với 1số vô tỉ khác 0 là một số vô tỉ
Thương một số vô tỉ với 1 số hữu tỉ là số vô tỉ
TỔng số vô tỉ là 1 số vô tỉ
cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng x+ y và x .y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Cho x là số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng : x + y và x.y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Tích của một số vô tỉ và một số hữu tỉ khác 0 là một số vô tỉ hay số hữu tỉ ?
Gọi a là số vô tỉ, b là số hữu tỉ khác 0.
Tích ab là số vô tỉ vì nếu ab = b' là số hữu tỉ thì \(a=\dfrac{b'}{b}\) suy ra a là số hữu tỉ, vô lí !
Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒⇒ b=c-a mà a và c là các số hữu tỉ ⇒⇒ a-c là số hữu tỉ ⇒⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒⇒ đpcm
giả sử này là sai
Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi \(a+b=c\) trong đó a,c là số hữu tỉ và b là số vô tỉ
\(\Rightarrow b=c-a\) mà a và c là các số hữu tỉ\(\Rightarrow a-c\) là số hữu tỉ \(\Rightarrow b\) là số hữu tỉ(trái giả thiết).
Vậy giả sử sai \(\Rightarrow\) tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.(đpcm)
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a + b = c trong đó a,c là số hữu tỉ và b là số vô tỉ
b = c - a mà a và c là các số hữu tỉ.
=> a - c là số hữu tỉ.
b là số hữu tỉ(trái giả thiết). Vậy giả sử sai.
Do đó: tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Giả sủ tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ
Gọi a+b=c trong đó a;c là số hữu tỉ và b là số vô tỉ
b=c-a mà a và c là các số hữu tỉ
=> a-c là số hữu tỉ b là số hữu tỉ ( trái giả thiết ) . Vậy giả sử sai
Do đó , tổng của một số hữu tỉ và một số vô tỉ là một số vô tỉ
Thương của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay một số hữu tỉ ?
Là một số vô tỉ
VD căn 2 là số vô tỉ ; 1 là hữu tỉ
căn 2 : 1 = căn 2 là số vô tỉ
Cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rắng x + y và x.y là nhứng số vô tỉ