Những câu hỏi liên quan
DH
Xem chi tiết
AN
16 tháng 1 2019 lúc 9:05

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

Bình luận (0)
AN
16 tháng 1 2019 lúc 13:21

Câu 2 làm hoi dài nên lười

Bình luận (0)
H24
1 tháng 9 2019 lúc 19:52

Câu 2 em nghĩ là dùng dồn biến.Câu 2 nếu làm kỹ sẽ rất dài do đó em làm khá tắt, vì vậy không thể tránh khỏi những sai sót khi quy đồng, chị tự kiểm tra lại:P

Giả sử c = min{a,b,c} suy ra \(1\ge3c^2+2c^3\Leftrightarrow0< c\le\frac{1}{2}\)

Chọn t > 0 thỏa mãn: \(2t^2+2t^2c=a^2+b^2+2abc\Leftrightarrow2t^2-\left(a^2+b^2\right)=2c\left(ab-t^2\right)\)

Giả sử \(ab>t^2\Rightarrow2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (trái với giả us73)

Vậy giả sử sai hay \(ab\le t^2\text{ và }a^2+b^2\ge2t^2\ge2ab\)

Đặt \(f\left(a;b;c\right)=ab+bc+ca-abc\)

Xét hiệu \(d=f\left(a;b;c\right)-f\left(t;t;c\right)\)

\(=\left(ab-t^2\right)+c\left(a+b-2t\right)-c\left(ab-t^2\right)\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(ab-t^2\right)+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)-c\left(2t^2-\left(a^2+b^2\right)\right)}{a+b+2t}\)

\(=\frac{\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)}{2c}+\frac{\left(2t^2-\left(a^2+b^2\right)\right)\left(1-c\right)}{a+b+2t}\)

\(=\left(1-c\right)\left(2t^2-\left(a^2+b^2\right)\right)\left[\frac{1}{2c}+\frac{1}{a+b+2t}\right]\le0\)

Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=t^2+2tc-t^2c\). Ta cần tìm max của f(t;t;c). Mặt khác từ cách chọn t ta thấy:

\(2t^2+c^2+2t^2c=1\Leftrightarrow t=\sqrt{\frac{1-c}{2}}\). Do đó 

\(f\left(t;t;c\right)=\frac{1-c}{2}+2\sqrt{\frac{1-c}{2}}.c-\frac{\left(1-c\right)c}{2}\) với \(0< c\le\frac{1}{2}\)

Dễ thấy f(t;t;c) là hàm đồng biến với \(0< c\le\frac{1}{2}\) nên f(t;t;c) đạt max tại c = 1/2. Khi đó \(f\left(t;t;c\right)=\frac{5}{8}\)

Vậy.....

Bình luận (0)
VT
Xem chi tiết
PH
Xem chi tiết
XO
14 tháng 8 2020 lúc 9:33

Ta có : a2 + b2 = c2

=> a2 + b2 - c2 = 0

=> a2 + b2 + 2ab - c2 = 2ab

=> (a + b)2 - c2 = 2ab

=> (a + b - c)(a + b + c) = 2ab

=> (a + b - c)/2 . (a + b + c) = ab

=> ab \(⋮\)a + b + c (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 8 2020 lúc 9:44

Bạn Xyz làm sai rồi nhé !!!!!

Chỗ:    \(\left(\frac{a+b-c}{2}\right)\left(a+b+c\right)=ab\)

Đoạn này để có:    \(ab⋮\left(a+b+c\right)\)     thì bạn phải lập luận     \(\frac{a+b-c}{2}\inℤ\)     đã nhé !!!!!! 

(NẾU BẠN SUY LUÔN RA     \(ab⋮\left(a+b+c\right)\)   LÀ SAI RỒI)

=> Cần phải chứng minh:     \(a+b-c⋮2\) 

Có: \(a^2+b^2=c^2\)

=> Nếu a chẵn; b chẵn thì c cũng chẵn        =>    \(a+b-c⋮2\) 

Nếu a chẵn; b lẻ thì c lẻ    =>   b - c chẵn     =>   \(a+b-c⋮2\)

Nếu a lẻ; b lẻ thì c chẵn    =>   a + b chẵn    =>   \(a+b-c⋮2\)

Nếu a lẻ; b chẵn thì c lẻ    =>   a - c chẵn     =>   \(a+b-c⋮2\)

VẬY QUA 4 TRƯỜNG HỢP THÌ TA =>   \(\frac{a+b-c}{2}\inℤ\)

Khi đó thì      \(ab⋮\left(a+b+c\right)\)

TA CÓ ĐPCM !!!!!

Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
HQ
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Bình luận (1)
HQ
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

Bình luận (1)
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NC
11 tháng 6 2019 lúc 15:13

Bài 2.

\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)

( 3 số nguyên liên tiếp chia hết cho 3)

\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3

=> P chia hết cho 3

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Bình luận (1)
NL
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Bình luận (0)
NL
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

Bình luận (0)