Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
AA
Xem chi tiết
BC
27 tháng 2 2017 lúc 15:06

\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}=\dfrac{21x-35y+35y-15z+15z-21x}{14+15+12}=\dfrac{0}{41}=0\)

=>3x-5y=7y-3z=5z-7x=0

3x-5y=0 <=> 3x=5y <=> \(\dfrac{x}{5}=\dfrac{y}{3}\) (1)

7y-3z=0 <=> 7y=3z <=> \(\dfrac{y}{3}=\dfrac{z}{7}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}=\dfrac{x+y+z}{5+3+7}=\dfrac{17}{15}\)

=>\(x=\dfrac{17}{15}.5=\dfrac{17}{3};y=\dfrac{17}{15}.3=\dfrac{17}{5};z=\dfrac{17}{15}.7=\dfrac{119}{15}\)

Vậy ...........

Bình luận (0)
NT
Xem chi tiết
AH
12 tháng 12 2017 lúc 1:23

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)

\(\Leftrightarrow \frac{7(3x-5y)}{14}=\frac{5(7y-3z)}{15}=\frac{3(5z-7x)}{12}=\frac{7(3x-5y)+5(7y-3z)+3(5z-7x)}{14+15+12}=0\)

Suy ra:

\(\left\{\begin{matrix} 3x=5y\\ 7y=3z\\ 5z=7x\end{matrix}\right.\Leftrightarrow 21x=35y=15z\)

\(\Leftrightarrow \frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{35}}=\frac{z}{\frac{1}{15}}=\frac{x+y+z}{\frac{1}{21}+\frac{1}{35}+\frac{1}{15}}=119\) (ADTCDTSBN)

\(\Rightarrow \left\{\begin{matrix} x=\frac{17}{3}\\ y=\frac{17}{5}\\ z=\frac{119}{15}\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
PT
Xem chi tiết
PP
4 tháng 10 2024 lúc 20:19

1,7y

Bình luận (0)
PN
Xem chi tiết
TB
7 tháng 4 2017 lúc 9:56

Có:LCM(3,5,7)= 105

=>\(\frac{3x-5y}{2}\)=\(\frac{7y-3z}{3}\)=\(\frac{5z-7x}{4}\)sẽ bằng \(\frac{21\left(3x-5y\right)}{2.21}\)=\(\frac{15\left(7y-3z\right)}{3.15}\)=\(\frac{9\left(5z-7x\right)}{4.9}\)

Và bằng \(\frac{63x-105y}{42}\)=\(\frac{105y-45z}{45}\)=\(\frac{45z-63x}{36}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{63x-105y+105y-45z+45z-63x}{45+42+36}\)=0

=>3x-5y=0 ;7y-3z=0 ;5z-7x=0

Xét 3x-5y=0 và 7y-3z=0

Có: 3x=5y :7y=3z

=>\(\frac{x}{5}\)=\(\frac{y}{3}\);\(\frac{y}{3}\)=\(\frac{z}{7}\)

=>\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{z}{7}\)

Áp dung dãy tỉ số bằng nhau ta có:

\(\frac{x+y+z}{5+3+7}\)=\(\frac{17}{15}\)

Do đó: \(\frac{x}{5}\)=\(\frac{17}{15}\)=>x=\(\frac{17}{3}\)

          \(\frac{y}{3}\)=\(\frac{17}{15}\)=>y=\(\frac{17}{5}\)

           \(\frac{z}{7}\)=\(\frac{17}{15}\)=>z=\(\frac{119}{15}\)

Bình luận (0)
SD
24 tháng 3 2021 lúc 20:41

2.Thấy $15;117y$ chia hết cho 3

\Rightarrow $38x$ chia hết cho 3

\Rightarrow $x$ chia hết cho 3

Đặt $x=3a$ (a thuộc Z)

\Rightarrow PT trở thành: $38a+39y=5$

\Leftrightarrow $y=\dfrac{5-38a}{39}=\dfrac{a+5}{39}-a$

Đặt $ dfrac{a+5}{39} = b$ (b thuộc Z)

\Rightarrow $a=39b-5$

\Rightarrow $y=b- (39b-5)=5-38b$

$x=3 (39b-5)=...$

Với b nguyên

Nghiệm tổng quát: $(x;y)=(...;.....)$ với b nguyên

Bình luận (0)
 Khách vãng lai đã xóa
3T
Xem chi tiết
NT
11 tháng 11 2021 lúc 20:28

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

Bình luận (0)
BM
Xem chi tiết
OO
23 tháng 10 2016 lúc 8:32

tích mik nha mik sẽ giải

nhae

Bình luận (0)
BM
23 tháng 10 2016 lúc 11:08

uk trả lời giúp mình đi

Bình luận (0)
H24
Xem chi tiết
MH
15 tháng 9 2021 lúc 16:04

\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)

\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

⇒x=42,y=28,z=20

Bình luận (0)
MH
15 tháng 9 2021 lúc 15:42

\(\dfrac{x}{3}=\dfrac{y}{2}\)\(\dfrac{x}{15}=\dfrac{y}{10}\)

\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)\(\dfrac{x}{15}=\dfrac{2y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)

⇒x=48,y=32,z=336/5

Bình luận (3)
AH
15 tháng 9 2021 lúc 16:03

Lời giải:

1. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{3}=\frac{y}{2}=\frac{2y}{4}=\frac{x+2y}{3+4}=\frac{-112}{7}=-16$

$\Rightarrow x=-16.3=-48; y=-16.2=-32$

Đoạn $\frac{x}{5}=\frac{x}{7}$ là sao em? Em xem lại đề.

2. 

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}\Rightarrow \frac{x}{21}=\frac{y}{14}(1)$

$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}(2)$

Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{10}$

Áp dụng tính chất dãy tỷ số bằng nhau:

$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$

$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$

$\Rightarrow x=2.21=42; y=2.14=28; z=2.10=20$

Bình luận (1)
NB
Xem chi tiết
AH
30 tháng 12 2023 lúc 23:58

Lời giải:

$\frac{7x+5y}{3x-5y}=\frac{7z+5t}{3z-5t}$

$\Rightarrow (7x+5y)(3z-5t)=(7z+5t)(3x-5y)$

$\Rightarrow 21xz-35xt+15yz-25yt = 21xz-35yz+15xt-25yt$

$\Rightarrow -35xt+15yz=-35yz+15xt$

$\Rightarrow -50xt=-50yz$

$\Rightarrow xt=yz\Rightarrow \frac{x}{y}=\frac{z}{t}$

Bình luận (0)