Những câu hỏi liên quan
XX
Xem chi tiết
LD
12 tháng 4 2021 lúc 13:54

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)

Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)

Đẳng thức xảy ra <=> x = 2 ; y = z = 1

Bình luận (1)
2D
Xem chi tiết
NM
Xem chi tiết
NL
26 tháng 3 2022 lúc 15:39

\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\dfrac{z}{z+\sqrt{z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)
NS
Xem chi tiết
NL
22 tháng 12 2022 lúc 23:46

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

Bình luận (0)
KG
Xem chi tiết
LP
8 tháng 12 2023 lúc 21:31

Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)

\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)

\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\) 

(vì \(2013=3.671=3\left(xy+yz+zx\right)\))

\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)

\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)

\(=\dfrac{1}{x+y+z}\)

ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)

\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)

\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))

Vậy ta có đpcm.

Bình luận (0)
HA
Xem chi tiết
LF
15 tháng 5 2017 lúc 23:09

chtt

Bình luận (2)
H24
16 tháng 5 2017 lúc 19:19

em thó nhé sir:)) đang rảnh

\(\dfrac{1}{x}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{4}{x\left(y+z\right)}\ge\dfrac{4}{\dfrac{\left(x+y+z\right)^2}{4}}=\dfrac{16}{\left(x+y+z\right)^2}=1\)

Bình luận (2)
ND
Xem chi tiết
NL
9 tháng 4 2022 lúc 22:02

\(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (1)
EC
Xem chi tiết
NM
8 tháng 8 2021 lúc 10:53

? cho a,b,c tìm x,y,z là seo?

Bình luận (1)
MY
8 tháng 8 2021 lúc 11:11

chắc đề cho x+y+z=1

\(=>\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(=>\dfrac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(=\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

làm tương tự với \(\dfrac{y}{y+\sqrt{y+xz}},\dfrac{z}{z+\sqrt{z+xy}}\)

\(=>A\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) dấu"=" xảy ra<=>x=y=z=`/3

Bình luận (1)
DF
Xem chi tiết
TH
14 tháng 1 2021 lúc 9:52

Ta có x + y + z = 1 nên z = 1 - x - y.

Bất đẳng thức cần chứng minh tương đương:

\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)

\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).

Áp dụng bất đẳng thức Cauchy - Schwarz:

\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)

\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)

Cộng vế với vế của (1), (2) ta có đpcm.

 

 

Bình luận (0)