giai Pt x^2 -2*(a+1)*x+2*(a+5)=0 .Tìm a để Pt có hai nghiệm thỏa mãn x +2y=3
Bài 6: Cho PT x² + mx + m+3=0.
c) Giải PT khi m -2.
d) Tìm m để PT có hai nghiệm phân biệt x, ,x, thỏa mãn x +x =9.
e) Tim m để PT có hai nghiệm phân biệt x, r, thỏa mãn 2x, +3x, = 5.
f) Tìm m để PT có nghiệm x, =-3. Tính nghiệm còn lại.
g) Tìm biểu thúức liên hệ giữa hai nghiệm phân biệt x,,x, không phụ thuộc vào m.
GIÚP MÌNH GẤP VỚI Ạ MÌNH ĐANG CẦN GẤP ;<
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
cho pt (1) \(x^2-2\left(m-1\right)x+m-3=0\)
a, CM : pt (1)có nghiệm với mọi m
b, Tìm m để pt (1) có 2 nghiệm phân biệt thỏa mãn\(x_1^2+x^2_2=10\)
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)
=4m^2-8m+4-4m+12
=4m^2-12m+16
=4m^2-12m+9+7=(2m-3)^2+7>0
=>Phương trình luôn có nghiệm
b: =>(x1+x2)^2-2x1x2=10
=>(2m-2)^2-2(m-3)=10
=>4m^2-8m+4-2m+6-10=0
=>4m^2-10m=0
=>2m(2m-5)=0
=>m=0 hoặc m=5/2
`x^2 -2ax+a^2 -a+1=0`
a. Tìm a để PT có nghiệm kép. Tìm nghiệp kép đó
b. Tìm a để PT có 2 nghiệm `x_1 ,x_2` thỏa mãn \(x_1^2+2ax_2=9\)
a: \(x^2-2ax+a^2-a+1=0\)
\(\text{Δ}=\left(-2a\right)^2-4\cdot1\cdot\left(a^2-a+1\right)\)
\(=4a^2-4a^2+4a-4\)
=4a-4
Để phương trình có nghiệm kép thì Δ=0
=>4a-4=0
=>4a=4
=>a=1
Thay a=1 vào phương trình, ta được:
\(x^2-2\cdot1\cdot x+1^2-1+1=0\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
b: Để phương trình có hai nghiệm thì Δ>=0
=>4a-4>=0
=>4a>=4
=>a>=1
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2a\right)}{1}=2a\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{a^2-a+1}{1}=a^2-a+1\end{matrix}\right.\)
\(x_1^2+2a\cdot x_2=9\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=9\)
=>\(\left(x_1^2+x_2^2\right)+x_1\cdot x_2=9\)
=>\(\left(x_1+x_2\right)^2-x_1x_2=9\)
=>\(\left(2a\right)^2-\left(a^2-a+1\right)=9\)
=>\(4a^2-a^2+a-1-9=0\)
=>\(3a^2+a-10=0\)
=>\(3a^2+6a-5a-10=0\)
=>(a+2)(3a-5)=0
=>\(\left[{}\begin{matrix}a+2=0\\3a-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-2\left(lọai\right)\\a=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)
a Khi m=-2 \(\Rightarrow x^2+\left(-2-2\right)x+-2+5=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) b Theo hệ thức Vi-et có :
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=m+5\end{matrix}\right.\)
Mà \(\left(x_1+x_2\right)^2-2x_1x_2=x_1^2+x_2^2=10\Rightarrow\left(2-m\right)^2-2\left(m+5\right)=10\Leftrightarrow m^2-4m+4-2m-10=10\Leftrightarrow m^2-6m-16=0\Leftrightarrow m^2+2m-8m-16=0\Leftrightarrow\left(m+2\right)\left(m-8\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=8\end{matrix}\right.\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: Khi m=-2 thì phương trình có hai nghiệm phân biệt là S={1;3}
Cho pt: \(x^2+6x+6a-a^2=0\)
a) Tìm a để pt có nghiệm
b) Gỉa sử x1; x2 là 2 nghiệm của pt. Tìm a để 2 nghiệm của pt thỏa mãn: \(\left(x_1\right)^3-8x_1=x_2\)
a) Phương trình đã cho có \(\Delta'=36-6a+a^2=a^2-6a+9+27=\left(a-3\right)^3+27>0\) nên có 2 nghiệm phân biệt với mọi a
b) Theo hệ thức Vi-et ta có \(x_1+x_2=6\Leftrightarrow x_2=6-x_1\)
Ta có \(x_2=x_1^3-8x_1\Leftrightarrow x_1^3-8x_1=6-x_1\Leftrightarrow x_1^3-7x_1-6=0\)
\(\Leftrightarrow x_1^3-x_1-6x_1-6=0\Leftrightarrow x_1\left(x_1-1\right)\left(x_1+1\right)-6\left(x_1+1\right)=0\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_1^2-x_1-6\right)=0\Leftrightarrow\left(x_1+1\right)\left(x_1^2+2x_1-3x_1-6\right)=0\)
\(\Leftrightarrow\left(x_1+1\right)\left[x_1\left(x_1+2\right)-3\left(x_1+2\right)\right]=0\Leftrightarrow\left(x_1+1\right)\left(x_1+2\right)\left(x_1-3\right)=0\)
\(\Leftrightarrow x_1\in\left\{-1;-2;3\right\}\)
*) \(x_1=-1\Leftrightarrow\left(-1\right)^2-6\left(-1\right)+6a-a^2=0\Leftrightarrow a^2-6a-7=0\Leftrightarrow\orbr{\begin{cases}a=-1\\a=7\end{cases}}\)
*) \(x_1=-2\Leftrightarrow\left(-2\right)^2-6\left(-2\right)+6a-a^2=0\Leftrightarrow a^2-6a-16=0\Leftrightarrow\orbr{\begin{cases}a=-2\\a=8\end{cases}}\)
*) \(x_1=3\Leftrightarrow3^2-6\cdot3+6a-a^2=0\Leftrightarrow a^2-6a+9=0\Leftrightarrow a=3\)
Vậy \(a=\left\{-1;-2;3;7;8\right\}\)
Cho pt : x^2-2(m-1)x-5=0 , giải pt với m=-1 tìm m để pt có hai nghiệm phân biệt X1,x2 thỏa mãn 2x1-x2=11
Thay m=-1 vào pt ta được:
\(x^2+4x-5=0\)\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Có \(ac=-5< 0\) =>Pt luôn có hai nghiệm pb trái dấu
Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\2x_1-x_2=11\\x_1x_2=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+2x_1-11=2\left(m-1\right)\\x_2=2x_1-11\\x_1x_2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{3}\\x_2=\dfrac{4m-15}{3}\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{2m+9}{3}\right)\left(\dfrac{4m-15}{3}\right)=-5\)\(\Leftrightarrow8m^2+6m-90=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{15}{4}\end{matrix}\right.\)
Vậy...
Cho PT x2 - 3x + m + 2 = 0 (1)
a) Tìm m để PT (1) có nghiệm.
b) Tìm m biết PT có 2 nghiệm x1, x2 thỏa mãn x13 + x23 = 63.
c) Tìm m biết PT có 2 nghiệm x1, x2 thỏa mãn x12 +2x2 +x1x2 = 5.
1/ cho hệ pt\(\hept{\begin{cases}x+2y=m\\2x+5y=1\end{cases}}\)a)giải hệ với m=1 . b)tìm m để hệ có nghiệm duy nhất thỏa mãn y=/x/
2/ cho hệ pt \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)a) giải hệ với m=2 .b) tìm các số nguyên m để hệ có nghiệm duy nhất với x>0 và y<0 .
c) tìm các số nguyên m để hệ có nghiệm duy nhất thỏa mãn x>2y
HELP !!!
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3