Những câu hỏi liên quan
CT
Xem chi tiết
DT
Xem chi tiết
H24
21 tháng 3 2018 lúc 12:14

Gọi ƯCLN của tử và mẫu là d. 

Ta có : \(2n+3⋮d\) <=> \(3\left(2n+3\right)=6n+9⋮d\)

và \(3n+5⋮d\) <=> \(2\left(3n+5\right)=6n+10⋮d\)

=> \(6n+10-\left(6n+9\right)⋮d\)<=> \(1⋮d\)

Mà d nguyên nên d=1 => P/s tối giản 

Bình luận (0)
CN
21 tháng 3 2018 lúc 12:18

Giả sử d là ƯCLN(2n+3,3n+5)\(\left(d\inℕ^∗\right)\)

Khi đó: \(\hept{\begin{cases}\left(2n+3\right)⋮d\\\left(3n+5\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(6n+9\right)⋮d\\\left(6n+10\right)⋮d\end{cases}}}\)

\(\Rightarrow\left[\left(6n+10\right)-\left(6n+9\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)

\(\Rightarrow\frac{2n+3}{3n+5}\)là phân số tối giản (đpcm)

Bình luận (0)

Gọi ƯCLN của tử và mẫu là :d

Ta có:\(2n+3⋮d\Leftrightarrow3.\left(2n+3\right)=6n+9⋮d\)

\(3n+5⋮d\Leftrightarrow2.\left(3n+5\right)=6n+10⋮d\)

\(\Rightarrow6n+10-\left(6n+9\right)⋮d\Rightarrow1⋮d\)gia

Mà d nguyên nên d là:1=> phân số tối giản

Bình luận (0)
NP
Xem chi tiết
H24
6 tháng 1 2022 lúc 14:41

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

Bình luận (1)
H24
Xem chi tiết
NT
2 tháng 3 2017 lúc 11:33

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

Bình luận (0)
CC
Xem chi tiết
NU
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Bình luận (0)
 Khách vãng lai đã xóa
CC
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
PG
8 tháng 1 2022 lúc 7:16

Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N*       ⇒  d ∈ N

Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d

3n - 2 ⋮ d  ⇒ 12n - 8 ⋮ d

Mặt khác:  4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d     ⇒ ( 12n - 8 ) - 1 ⋮ d    

⇒  1 ⋮ d hay suy ra d = 1

Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản

Bình luận (0)
NT
8 tháng 1 2022 lúc 7:16

Gọi a=UCLN(3n-2;4n-3)

\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮a\\12n-9⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Do đó: Phân số 3n-2/4n-3 là phân số tối giản

Bình luận (0)

Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N*       ⇒  d ∈ N

Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d

3n - 2 ⋮ d  ⇒ 12n - 8 ⋮ d

Mặt khác:  4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d     ⇒ ( 12n - 8 ) - 1 ⋮ d    

⇒  1 ⋮ d hay suy ra d = 1

Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản

Bình luận (1)
CA
Xem chi tiết
H24
Xem chi tiết
XO
6 tháng 5 2021 lúc 23:01

Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))

=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
AH
17 tháng 4 2022 lúc 0:10

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

Bình luận (0)