Những câu hỏi liên quan
NM
Xem chi tiết
TC
17 tháng 4 2022 lúc 20:44

ta có:\(x\ge0\Rightarrow2x^2\ge0\)

\(\Rightarrow2x^2+2x\ge0\)

mà 10 > 0

\(=>2x^2+2x+10>0\)

hayf(x) ko có nghiệm

Bình luận (0)
T1
Xem chi tiết
LD
11 tháng 5 2020 lúc 15:23

Trình bày đề bài cho dễ nhìn bạn eyy :v 

Khó nhìn như này thì God cũng chịu -.-

Bình luận (0)
 Khách vãng lai đã xóa
PN
11 tháng 5 2020 lúc 15:48

mù mắt xD ghi rõ đề đi bạn ơi !

Bình luận (0)
 Khách vãng lai đã xóa
WH
11 tháng 5 2020 lúc 16:01

Dịch:

Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)

Tính a) \(f\left(x\right)+g\left(x\right)\)

b) \(g\left(x\right)-h\left(x\right)\)

2. Tìm nghiệm của đa thức

a) \(7-2x\)

b) (x+1)(x-2)(2x-1)

c) 2x+5

d) 3x2+x

3. CMR các đa thức sau không có nghiệm

\(a,f\left(x\right)=x^2+1\)

\(b,\left(2x+1\right)^2+3\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
ST
26 tháng 4 2016 lúc 18:20

Ta có: x² + 2x + 2 

= x² + 2x + 1 + 1 

= (x² + 2x + 1) + 1 

= (x + 1)² + 1 

Do (x + 1)² ≥ 0 ∀x ∈ R 

=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R 

=> x² + 2x + 2 > 0 ∀x ∈ R 

=> đpcm

Bình luận (0)
H24
26 tháng 4 2016 lúc 18:21

Ta có: x² + 2x + 2 

= x² + 2x + 1 + 1 

= (x² + 2x + 1) + 1 

= (x + 1)² + 1 

Do (x + 1)² ≥ 0 ∀x ∈ R 

=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R 

=> x² + 2x + 2 > 0 ∀x ∈ R 

=> đpcm

Bình luận (0)
SH
26 tháng 4 2016 lúc 18:22

Ta có: x² + 2x + 2 

= x² + 2x + 1 + 1 

= (x² + 2x + 1) + 1 

= (x + 1)² + 1 

Do (x + 1)² ≥ 0 ∀x ∈ R 

=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R 

=> x² + 2x + 2 > 0 ∀x ∈ R 

=> đpcm

Bình luận (0)
TV
Xem chi tiết
DD
8 tháng 5 2022 lúc 9:50

a. ta có 

    (2x − 3)2 ≥ 0

=>  (2x − 3)2 + 10 > 0

=> đa thức trên ko có nghiệm

b. ta có:

  x2 ≥ 0

    4 > 0

=> x2 + 4 > 0

=> x2 + 2x + 4 > 0

=> đa thức trên ko có nghiệm

câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!

 

Bình luận (0)
CY
Xem chi tiết
LD
10 tháng 7 2020 lúc 21:40

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

Bình luận (0)
 Khách vãng lai đã xóa
2U
10 tháng 7 2020 lúc 21:42

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
10 tháng 7 2020 lúc 21:47

Ê Tú ... Ai dạy mi \(2x\ge0\)đấy :)

Cách khác delta

\(P\left(x\right)=x^2+2x+4\)

\(P\left(x\right)=x^2+2x+1+3\)

\(P\left(x\right)=\left(x+1\right)^2+3\)

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\3>0\end{cases}}\Rightarrow\left(x+1\right)^2+3\ge3>0\forall x\)

=> đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
NV
14 tháng 5 2015 lúc 6:38

Dễ mà áp dụng tính chất này mà làm nè:

  Câu a với câu b: (A+B)2=A2+2AB+B2

  Câu c: (A-B)2=A2-2AB+B2

 

Bình luận (0)
TH
14 tháng 5 2015 lúc 7:10

a. \(x^2+2x+2\)

\(=x^2+x+x+1+1\)

\(=\left(x^2+x\right)+\left(x+1\right)+1\)

\(=x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x+1\right)+1\)

\(=\left(x+1\right)^2+1>0+1>0\)

Vậy: Đa thức trên vô nghiệm

b. \(x^2-2x+5\)

\(=x^2-x-x+1+4\)

\(=\left(x^2-x\right)-\left(x-1\right)+4\)

\(=x\left(x-1\right)-\left(x-1\right)+4\)

\(=\left(x-1\right)\left(x-1\right)+4\)

\(=\left(x-1\right)^2+4>0+4>0\)

Vậy: Đa thức trên vô nghiệm

c.\(x^2-4x+5\)

\(=x^2-2x-2x+4+1\)

\(=\left(x^2-2x\right)-\left(2x-4\right)+1\)

\(=x\left(x-2\right)-2\left(x-2\right)+1\)

\(=\left(x-2\right)\left(x-2\right)+1\)

\(=\left(x-2\right)^2+1>0+1>0\)

Vậy: Đa thức trên vô nghiệm

Bình luận (0)
TN
23 tháng 4 2017 lúc 16:49

Dùng 2 hằng đẳng thức đáng nhớ đầu tiên để áp dụng tính nhẩm nhé

Bình luận (0)
TL
Xem chi tiết
H9
9 tháng 7 2023 lúc 10:15

a) \(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(A\left(x\right)=\left(2x^2+1+x^4-5x\right)+\left(x^4+5-3x^2+x^2+5x\right)\)

\(A\left(x\right)=2x^2+1+x^4-5x+x^4+5-3x^2+x^2+5x\)

\(A\left(x\right)=2x^4+6\)

b) Mà: \(A\left(x\right)=2x^4+6>0\)

⇒ A(x) không có nghiệm

Bình luận (0)
KB
Xem chi tiết

Giả sử đa thức P(x) có nghiệm nguyên 

=>P(x) có nghiệm chia hết cho 1 hoặc -1

=>1 và -1 là nghiệm

+) Nếu x=1

⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1

⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1

⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1

⇒P(1)=−9≠0⇒P(1)=-9≠0

⇒x=1 không phải là nghiệm của P(x)P(x)

+) Nếu x=−1

⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1

⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1

⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1

⇒P(−1)=1≠0⇒P(-1)=1≠0

⇒x=−1 không phải là nghiệm của P(x)P(x)

Vậy P(x) không có nghiệm là số nguyên

 

Bình luận (0)
TH
Xem chi tiết
EC
1 tháng 8 2021 lúc 16:00

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

Bình luận (0)
TL
1 tháng 8 2021 lúc 16:01

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

Bình luận (0)