Những câu hỏi liên quan
DX
Xem chi tiết
HN
2 tháng 3 2021 lúc 13:04

Ta có:

\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\) (có 50 số hạng) 

⇔ \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{3}\)                   \(\left(1\right)\)

\(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (có 50 số hạng)

⇔ \(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{4}\)                    \(\left(2\right)\)

Từ (1) và (2), cộng vế theo vế. Ta được:

\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}+\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) 

⇒ \(ĐPCM\)

Bình luận (2)
H24
Xem chi tiết
MS
13 tháng 3 2018 lúc 4:33

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)

Bình luận (1)
NY
Xem chi tiết

bạn ơi cái câu <1 số hạng cuối cùng là j thế?

Bình luận (1)
TL
Xem chi tiết
H24
3 tháng 8 2018 lúc 22:19

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{150}\)

\(\dfrac{1}{102}>\dfrac{1}{150}\)

....

\(\dfrac{1}{150}=\dfrac{1}{150}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)

Ta có:

\(\dfrac{1}{152}>\dfrac{1}{200}\)

\(\dfrac{1}{153}>\dfrac{1}{200}\)

....

\(\dfrac{1}{200}=\dfrac{1}{200}\)

=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)

=> \(A>\dfrac{7}{12}\)

Bình luận (2)
NN
Xem chi tiết
PD
16 tháng 5 2018 lúc 20:07

+)Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)

\(A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+...+\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+...+\dfrac{1}{200}\right)\)\(A>\dfrac{1}{125}.25+\dfrac{1}{150}.25+\dfrac{1}{175}.25+\dfrac{1}{200}.25=\dfrac{533}{840}>\dfrac{5}{8}\)

+)\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}\)

\(A=\left(\dfrac{1}{101}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...+\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...+\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...+\dfrac{1}{200}\right)\)\(A< \dfrac{1}{100}.20+\dfrac{1}{120}.20+\dfrac{1}{140}.20+\dfrac{1}{160}.20+\dfrac{1}{180}.20=\dfrac{1879}{2520}< \dfrac{3}{4}\)

Bình luận (0)
NL
Xem chi tiết
LV
23 tháng 6 2018 lúc 13:26

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

Bình luận (0)
TV
Xem chi tiết
AT
Xem chi tiết
NT
6 tháng 3 2021 lúc 12:53

Ta có: \(C=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+\dfrac{1}{122}+\dfrac{1}{123}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+\dfrac{1}{182}+\dfrac{1}{183}+...+\dfrac{1}{200}\right)\)

\(\Leftrightarrow C>20\cdot\dfrac{1}{120}+30\cdot\dfrac{1}{150}+30\cdot\dfrac{1}{180}+20\cdot\dfrac{1}{200}\)

\(\Leftrightarrow C>\dfrac{1}{6}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{10}=\dfrac{19}{30}=\dfrac{76}{120}\)

\(\Leftrightarrow C>\dfrac{75}{120}=\dfrac{5}{8}\)

hay \(C>\dfrac{5}{8}\)(đpcm)

Bình luận (0)
H24
Xem chi tiết