Violympic toán 6

TL

Chứng minh rằng:

\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{7}{12}\)

Giúp mk nhé!

H24
3 tháng 8 2018 lúc 22:19

Ta có:

\(\dfrac{1}{101}>\dfrac{1}{150}\)

\(\dfrac{1}{102}>\dfrac{1}{150}\)

....

\(\dfrac{1}{150}=\dfrac{1}{150}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 số)=\(\dfrac{1}{3}\)

Ta có:

\(\dfrac{1}{152}>\dfrac{1}{200}\)

\(\dfrac{1}{153}>\dfrac{1}{200}\)

....

\(\dfrac{1}{200}=\dfrac{1}{200}\)

=>\(\dfrac{1}{151}+\dfrac{1}{153}+...+\dfrac{1}{120}>\dfrac{1}{120}+\dfrac{1}{120}+...+\dfrac{1}{120}\)(50 số)=\(\dfrac{1}{4}\)

=>\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}\)

=> \(A>\dfrac{7}{12}\)

Bình luận (2)

Các câu hỏi tương tự
DX
Xem chi tiết
AT
Xem chi tiết
DX
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
TL
Xem chi tiết
NN
Xem chi tiết