Giải pt \(\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}\)
Giải pt \(\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}\)
\(\frac{2}{x-14}\) -\(\frac{5}{x-13}\)= \(\frac{2}{x-9}\)- \(\frac{5}{x-11}\)
ĐKXĐ : x\(\ne\)14;13;9;11
(=) \(\frac{2}{x-14}\)- \(\frac{5}{x-13}\)= \(\frac{2}{x-9}\)-\(\frac{5}{x-11}\)
(=) \(\frac{2}{x-14}\)-\(\frac{2}{x-9}\)=\(\frac{5}{x-13}\)-\(\frac{5}{x-11}\)
(=) \(\frac{2\left(x-9\right)}{\left(x-14\right)\left(x-9\right)}\)-\(\frac{2\left(x-14\right)}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{5\left(x-11\right)}{\left(x-13\right)\left(x-11\right)}\)-\(\frac{5\left(x-13\right)}{\left(x-13\right)\left(x-11\right)}\)
(=) \(\frac{2x-18-2x+28}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{5x-55-5x+65}{\left(x-13\right)\left(x-11\right)}\)
(=) \(\frac{10}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{10}{\left(x-13\right)\left(x-11\right)}\)
=) ( x - 14 ) ( x - 9 ) = ( x - 13 ) ( x - 11 )
(=) x2 - 9x - 14x + 126 = x2 - 13x - 11x + 143
(=) x - 17 = 0
(=) x = 17
Vậy phương trình có nghiệm là: x = 17
Giải các phương trình sau: (TM ĐK)
1) \(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)
2) \(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)
3) \(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10}\)
4) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)
5) \(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)
mng giúp mk bài này nha. Cảm ơn bạn nhiều
\(1,\left(dk:x\ne0,-1,4\right)\)
\(\Leftrightarrow\dfrac{9}{x+1}+\dfrac{2}{x-4}-\dfrac{11}{x}=0\)
\(\Leftrightarrow\dfrac{9x\left(x-4\right)+2x\left(x+1\right)-11\left(x+1\right)\left(x-4\right)}{x\left(x+1\right)\left(x-4\right)}=0\)
\(\Leftrightarrow9x^2-36x+2x^2+2x-11x^2+44x-11x+44=0\)
\(\Leftrightarrow-x=-44\)
\(\Leftrightarrow x=44\left(tm\right)\)
\(2,\left(đk:x\ne4\right)\)
\(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{2+x}{x-4}-\dfrac{3}{2\left(x-4\right)}+\dfrac{5}{6}=0\)
\(\Leftrightarrow\dfrac{14.2-6\left(2+x\right)-3.3+5\left(x-4\right)}{6\left(x-4\right)}=0\)
\(\Leftrightarrow28-12-6x-9+5x-20=0\)
\(\Leftrightarrow-x=13\)
\(\Leftrightarrow x=-13\left(tm\right)\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}< x\le\dfrac{13}{4}+\dfrac{14}{8}\)
\(\dfrac{1}{4}+\dfrac{5}{12}+\dfrac{-1}{13}< x< \dfrac{7}{5}+\dfrac{2}{10}+\dfrac{1}{2}\) \(\dfrac{79}{15}+\dfrac{7}{5}+\dfrac{-8}{3}\le x\le\dfrac{10}{3}+\dfrac{15}{4}+\dfrac{23}{12}\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)
Vậy \(x\in\left\{22;23;24;...\right\}\)
\(\dfrac{????????}{????????????}\)
a) \(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11}{55}+\dfrac{10}{55}< \dfrac{x}{55}< \dfrac{22}{55}+\dfrac{1}{55}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{23}{55}\)
\(\Rightarrow\) \(x=22\)
b) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}< x\le\dfrac{13}{4}+\dfrac{14}{8}\)
\(\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{1}{6}< x\le\dfrac{26}{8}+\dfrac{14}{8}\)
\(1< x\le5\)
\(\Rightarrow\) \(x\in\) {\(2;3;4;5\)}
c) \(\dfrac{1}{3}+\dfrac{5}{12}+\dfrac{-1}{13}< x< \dfrac{7}{5}+\dfrac{2}{10}+\dfrac{1}{2}\)
Ko biết làm
d) \(\dfrac{79}{15}+\dfrac{7}{5}+\dfrac{-8}{3}\le x\le\dfrac{10}{3}+\dfrac{15}{4}+\dfrac{23}{12}\)
\(\dfrac{79}{15}+\dfrac{21}{15}+\dfrac{-40}{15}\le x\le\dfrac{40}{12}+\dfrac{45}{12}+\dfrac{23}{12}\)
\(4\le x\le9\)
\(\Rightarrow\) \(x\in\) {\(4;5;6;7;8;9\)}
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\) giải pt
\(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(< =>\dfrac{x+1}{59}+1+\dfrac{x+3}{57}+1+\dfrac{x+5}{55}+1=\dfrac{x+7}{53}+1+\dfrac{x+9}{51}+1+\dfrac{x+11}{49}+1\)
\(< =>\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}=\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(< =>\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)=0\\ < =>x+60=0\\ < =>x=-60\)
Ta có : \(\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}=\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}\)
\(\Leftrightarrow\dfrac{x+1}{59}+\dfrac{x+3}{57}+\dfrac{x+5}{55}+3\text{=}\dfrac{x+7}{53}+\dfrac{x+9}{51}+\dfrac{x+11}{49}+3\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\left(\dfrac{x+1}{59}+1\right)+\left(\dfrac{x+3}{57}+1\right)+\left(\dfrac{x+5}{55}+1\right)\text{=}\left(\dfrac{x+7}{53}+1\right)+\left(\dfrac{x+9}{51}+1\right)+\left(\dfrac{x+11}{49}+1\right)\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}\text{=}\dfrac{x+60}{53}+\dfrac{x+60}{51}+\dfrac{x+60}{49}\)
\(\Leftrightarrow\dfrac{x+60}{59}+\dfrac{x+60}{57}+\dfrac{x+60}{55}-\dfrac{x+60}{53}-\dfrac{x+60}{51}-\dfrac{x-60}{49}\text{=}0\)
\(\Leftrightarrow\left(x+60\right)\left(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\right)\text{=}0\)
\(Do\) \(\dfrac{1}{59}+\dfrac{1}{57}+\dfrac{1}{55}-\dfrac{1}{53}-\dfrac{1}{51}-\dfrac{1}{49}\ne0\)
\(\Leftrightarrow\left(x+60\right)\text{=}0\)
\(x\text{=}-60\)
\(Vậy...\)
Giải PT sau:
\(\dfrac{x+19}{3}+\dfrac{x+13}{5}=\dfrac{x+7}{7}+\dfrac{x+1}{9}\)
Giải chi tiết giúp mình nheee :>
`(x+19)/3 +(x+13)/5 = (x+7)/7 + (x+1)/9`
`<=> x/3 + 19/3 +x/5 +13/5 = x/7 +1 +x/9 +1/9`
`<=> x/3 +x/5 -x/7 -x/9 = 1+1/9 -19/3 -13/5`
`<=> x (1/3 +1/5 -1/7 -1/9) = -118/45`
`<=> x * 88/315 = -352/45`
`<=> x = -28`
Vậy `S={-28}`
9 - 3 x ( X - 9 ) = 6
4 + 6 x ( X + 1 ) 70
\(\dfrac{X}{13}+\dfrac{15}{26}=\dfrac{46}{52}\)
\(\dfrac{11}{14}-\dfrac{3}{X}=\dfrac{5}{14}\)
5 x ( 3 + 7 x X ) = 40
X x 6 + 12 : 3 = 120
X x 3,7 + X x 6,3 = 120
( 15 x 24 - X ) : 0,25 = 100 : \(\dfrac{1}{4}\)
71 + 65 x 4 = \(\dfrac{X+140}{X}\)+ 260
( X +1 ) + ( X + 4 ) + ( x + 7 ) + ...... + (X + 28 ) = 155
đây là bài tìm X
Giải:
\(9-3\times\left(x-9\right)=6\)
\(3\times\left(x-9\right)=9-6\)
\(3\times\left(x-9\right)=3\)
\(x-9=3:3\)
\(x-9=1\)
\(x=1+9\)
\(x=10\)
\(4+6\times\left(x+1\right)=70\)
\(6\times\left(x+1\right)=70-4\)
\(6\times\left(x+1\right)=66\)
\(x+1=66:6\)
\(x+1=11\)
\(x=11-1\)
\(x=10\)
\(\dfrac{x}{13}+\dfrac{15}{26}=\dfrac{46}{52}\)
\(\dfrac{x}{13}=\dfrac{23}{26}-\dfrac{15}{26}\)
\(\dfrac{x}{13}=\dfrac{4}{13}\)
\(\Rightarrow x=4\)
\(\dfrac{11}{14}-\dfrac{3}{x}=\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{11}{14}-\dfrac{5}{14}\)
\(\dfrac{3}{x}=\dfrac{3}{7}\)
\(\Rightarrow x=7\)
\(5\times\left(3+7\times x\right)=40\)
\(3+7\times x=40:5\)
\(3+7\times x=8\)
\(7\times x=8-3\)
\(7\times x=5\)
\(x=5:7\)
\(x=\dfrac{5}{7}\)
\(x\times6+12:3=120\)
\(x\times6+4=120\)
\(x\times6=120-4\)
\(x\times6=116\)
\(x=116:6\)
\(x=\dfrac{58}{3}\)
\(x\times3,7+x\times6,3=120\)
\(x\times\left(3,7+6,3\right)=120\)
\(x\times10=120\)
\(x=120:10\)
\(x=12\)
\(\left(15\times24-x\right):0,25=100:\dfrac{1}{4}\)
\(\left(360-x\right):0,25=400\)
\(360-x=400.0,25\)
\(360-x=100\)
\(x=360-100\)
\(x=260\)
\(71+65\times4=\dfrac{x+140}{x}+260\)
\(\left(x+140\right):x+260=71+260\)
\(x:x+140:x+260=331\)
\(1+140:x+260=331\)
\(140:x=331-1-260\)
\(140:x=70\)
\(x=140:70\)
\(x=2\)
\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=155\)
\(10\times x+\left(1+4+7+...+28\right)=155\)
Số số hạng \(\left(1+4+7+...+28\right)\) :
\(\left(28-1\right):3+1=10\)
Tổng dãy \(\left(1+4+7+...+28\right)\) :
\(\left(1+28\right).10:2=145\)
\(\Rightarrow10\times x+145=155\)
\(10\times x=155-145\)
\(10\times x=10\)
\(x=10:10\)
\(x=1\)
Đều theo cách lớp 5 nha em!
Giải PT
a) x4 = 4x + 1
b) x2 = \(\dfrac{4x^2}{(x+2\left(\right)^{ }2}\) = 12
Bài 2: Giải PT
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\)
2.
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
Vì \(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
\(\Rightarrow x>0\)
Vậy \(x>0\)
giải bất pt;
a)\(\dfrac{x+3}{2011}+\dfrac{x+1}{2013}\ge\dfrac{x+10}{2004}+\dfrac{x+13}{2001}\)
b) (x-5)(x-9)>0
c)\(\dfrac{x-5}{x-8}>2\)
(x-5)(x-9)>0\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\Leftrightarrow x>5\\x-9>0\Leftrightarrow x>9\end{matrix}\right.\)
Vậy x>9 thì (x-5)(x-9)>0
có
\(\dfrac{x-5}{x-8}>2\\ < =>x-5>2\left(x-8\right)\\ < =>x-5>2x-16\\ < =>-x>-11\\ < =>x< 11\)
vậy nghiệm của bpt là x<11
a/
\(\dfrac{x+3}{2011}+\dfrac{x+1}{2013}\ge\dfrac{x+10}{2004}+\dfrac{x+13}{2001}\)
\(\Leftrightarrow\dfrac{x+2014-2011}{2011}+\dfrac{x+2014-2013}{2013}\ge\dfrac{x+2014-2004}{2004}+\dfrac{x+2014-2001}{2001}\)
\(\Leftrightarrow-1+\dfrac{x+2014}{2011}-1+\dfrac{x+2014}{2013}\ge-1+\dfrac{x+2014}{2004}-1+\dfrac{x+2014}{2001}\)
\(\Leftrightarrow\dfrac{x+2014}{2011}+\dfrac{x+2014}{2013}-2\ge\dfrac{x+2014}{2004}+\dfrac{x+2014}{2001}-2\)
\(\Leftrightarrow\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2013}\right)\ge\left(x+2014\right)\left(\dfrac{1}{2004}+\dfrac{1}{2001}\right)\)
\(\Leftrightarrow\dfrac{1}{2011}+\dfrac{1}{2013}>\dfrac{1}{2004}+\dfrac{1}{2001}\) hoặc \(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2013}\right)\ge\left(x+2014\right)\left(\dfrac{1}{2004}+\dfrac{1}{2001}\right)\)
(với mọi x>0) \(\Leftrightarrow x=2014\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) e) \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\)
a) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{6}{y}=9\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{7}{x}=16\\\dfrac{2}{x}-\dfrac{6}{y}=7\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{7}{16}\\y=-\dfrac{42}{17}\end{matrix}\right.\)
Vậy S = {(\(\dfrac{7}{16};-\dfrac{42}{17}\))}
b) Đk xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{1}{y}=14\\\dfrac{8}{x}-\dfrac{1}{y}=-8\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{13}{x}=6\\\dfrac{5}{x}+\dfrac{1}{y}=14\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\dfrac{13}{6}\\y=\dfrac{13}{152}\end{matrix}\right.\)
Vậy S={(\(\dfrac{13}{6};\dfrac{13}{152}\))}
c) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{7}{y}=21\\-\dfrac{2}{x}-\dfrac{5}{y}=-11\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{2}{y}=10\\\dfrac{2}{x}+\dfrac{7}{y}=21\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{1}{5}\\x=-\dfrac{1}{7}\end{matrix}\right.\)
Vậy S={(\(-\dfrac{1}{7};\dfrac{1}{5}\))}
d) ĐK xác định : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{9}{x}+\dfrac{2}{y}=22\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{14}{x}=35\\\dfrac{5}{x}-\dfrac{2}{y}=13\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)
Vậy S={(0,4;-4)}
e) ĐKXĐ : x≠0;y≠0
ta có : \(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{5}{y}=10\\-\dfrac{3}{x}-\dfrac{7}{y}=8\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-\dfrac{2}{y}=18\\\dfrac{3}{x}+\dfrac{5}{y}=10\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-\dfrac{1}{9}\\x=\dfrac{3}{55}\end{matrix}\right.\) 'Vậy....