Tìm x∈Z để A=\(\dfrac{3x+5}{2x+1}\)∈Z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x thuộc Z để biểu thức có giá trị nguyên
a) A=\(\dfrac{3x+21}{x+4}\)
b) B=\(\dfrac{2x^3-7x^2+7x+5}{2x-1}\)
a)
ĐKXĐ: \(x\ne-4\)
Để A nguyên thì \(3x+21⋮x+4\)
\(\Leftrightarrow3x+12+9⋮x+4\)
mà \(3x+12⋮x+4\)
nên \(9⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(9\right)\)
\(\Leftrightarrow x+4\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow x\in\left\{-3;-5;-1;-7;5;-13\right\}\)(nhận)
Vậy: Để A nguyên thì \(x\in\left\{-3;-5;-1;-7;5;-13\right\}\)
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để B nguyên thì \(2x^3-7x^2+7x+5⋮2x-1\)
\(\Leftrightarrow2x^3-x^2-6x^2+3x+4x-2+7⋮2x-1\)
\(\Leftrightarrow x^2\left(2x-1\right)-3x\left(2x-1\right)+2\left(2x-1\right)+7⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-3x+2\right)+7⋮2x-1\)
mà \(\left(2x-1\right)\left(x^2-3x+2\right)⋮2x-1\)
nên \(7⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;8;-6\right\}\)
hay \(x\in\left\{1;0;4;-3\right\}\)(nhận)
Vậy: \(x\in\left\{1;0;4;-3\right\}\)
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
Cho biểu thức:
P = \(\left(\dfrac{x+1}{3x^2+3x}+\dfrac{1-2x}{6x^2-3x}-1\right)\): \(\dfrac{1-x}{2x}\)
a) Rút gọn P
b) Tìm x ∈ Z đề P có giá trị nguyên
c) Tìm x để P ≤ 1
\(a,P=\left[\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right]\cdot\dfrac{2x}{1-x}\left(x\ne1;x\ne-1;x\ne0\right)\\ P=\left(\dfrac{1}{3x}-\dfrac{1}{3x}-1\right)\cdot\dfrac{2x}{1-x}\\ P=-1\cdot\dfrac{2x}{1-x}=\dfrac{2x}{x-1}\\ b,P=2+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{2;3\right\}\left(x\ne-1;x\ne0\right)\\ c,P\le1\Leftrightarrow\dfrac{2x}{x-1}-1\le0\\ \Leftrightarrow\dfrac{x+1}{x-1}\le0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\le0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1\ge0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-1\le x< 1\)
a: \(P=\left(\dfrac{x+1}{3x\left(x+1\right)}-\dfrac{2x-1}{3x\left(2x-1\right)}-1\right)\cdot\dfrac{2x}{x-1}\)
\(=\dfrac{1-1-3x}{3x}\cdot\dfrac{2x}{x-1}\)
\(=\dfrac{-3x}{3x}\cdot\dfrac{2x}{x-1}=\dfrac{-2x}{x-1}\)
A= \(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x-1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a/ rút gọn A
b/ tìm x thuộc Z để A nguyên
c/ tính A vs x = -2, x = -3
d/ tìm x để A = 1
A=\(\dfrac{5}{2x-1}\).Tìm x∈Z để A∈Z
Để \(A\in Z\Rightarrow\dfrac{5}{2x-1}\in Z\Rightarrow5⋮\left(2x-1\right)\Rightarrow2x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow x\in\left\{-2;0;1;3\right\}\)
Cho \(A=\dfrac{2x+1}{x^2-3x+2}-\dfrac{x+1}{x-1}-\dfrac{x^2+5}{x^2-3x+2}+\dfrac{x^2+x}{x-1}\)
a) Rút gọn A
b) Tìm x ∈ Z để A ∈ Z
a: \(=\dfrac{2x+1-x^2-5}{\left(x-1\right)\left(x-2\right)}+\dfrac{-x-1+x^2+x}{x-1}\)
\(=\dfrac{-x^2+2x-4}{\left(x-1\right)\left(x-2\right)}+\dfrac{x^2-1}{x-1}\)
\(=\dfrac{-x^2+2x-4+x^3-2x^2-x+2}{\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{x^3-3x^2+x-2}{\left(x-1\right)\left(x-2\right)}\)
b: Để A là số nguyên thì \(x^3-3x^2+2x-x-2⋮\left(x-1\right)\left(x-2\right)\)
=>x+2 chia hết cho (x-1)(x-2)
=>x^2+3x+2 chia hết cho x^2-3x+2
=>x^2+2-3x+6x chia hết cho x^2-3x+2
=>6x chia hết cho x^2-3x+2
=>6 chia hết cho x^2-3x+2
=>\(x^2-3x+2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{0;4;-1\right\}\)
Tìm x,y,z biết :
1) \(x:y:z=3:5:\left(-2\right)\) và \(5x-y+3z=-16\)
2) \(\dfrac{x}{2}=\dfrac{y}{-3};\dfrac{z}{3}=\dfrac{y}{4}\) và \(x+y+z=5,2\)
3) \(2x=3y;7z=5y\) và \(3x-7y+5z=30\)
4) \(3x=4y=5z\) và \(x-\left(y+z\right)=-21\)
5) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và \(2x+3y-z=50\)
5, Tìm x, y ϵ Z, sao cho:
a) y = \(\dfrac{6x-4}{2x+3}\) b) \(\dfrac{1}{x}-\dfrac{y}{2}=\dfrac{1}{4}\)
c) xy-3x+2y=5 d) (3x-5)(2x+1)=12
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
\(\text{Cho }A=\left(\dfrac{3x^2+3}{x^3-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{2x^2-5x+5}{x-2}\)
\(\text{a, Rút gọn }\)
\(\text{b, Tìm }x\in Z\)\(\text{ để }A\in Z\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)