chứng tỏ n4+6n3+11n2+30n-24⋮24 (n∈Z)
chứng minh rằng với mọi số tự nhiên n ta đều có: A= n4+6n3+11n2+6n chia hết cho 24
hỏi từ lâu hổng ai trả lời hihi
a) x^2-10x+24=0
b)chứng tỏ rằng 12n+1/30n+2 là phân số tối giản
HELP PLS!
a, x2−10x+24=0⇔x2−10x+25−1=0⇔(x−5)2−1=0⇔(x−6)(x−4)=0⇔[x=6x=4VậyS={6;4}
b, Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n thì: \(n^{\text{4}}+6n^3+11n^2+30n-24\) chia hết cho 24
(n4+6n3+11n2+6n)+24n-24n
= (n4+n3+5n3+5n2+6n2+6)+24.(n-1)
= (n+1)(n3+5n2+6n)+24.(n-1)
=n(n+1)(n2+5n+6)+24.(n-1)
= n(n+1)(n2+3n+2n+6)+24(n-1)
=n(n+1)(n+2)(n+3)+24(n-1)
Vi 4 so tu nhien lien tiep chia het cho 24
=> n(n+1)(n+2)(n+3)⋮24 va 24(n-1)⋮24
=> dpcm
chứng tỏ 30n+11/45n+17 là phân số tối giản với mọi n thuộc Z
Chứng minh với mọi số nguyên n thì A = n 4 - 2 n 3 - n 2 + 2n chia hết cho 24.
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Chứng tỏ mọi n thuộc Z, các phân số sau tối giản:
a.15n+1/30n+1 b.18n+3/21n+7
a)
Gọi d là ước chung của 15n + 1 và 30n + 1 \(\left(d\in N\right)\)
\(\Rightarrow\left\{{}\begin{matrix}15n+1⋮d\Rightarrow2\left(15n+1\right)⋮d\Rightarrow30n+2⋮d\\30n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left(30n+2\right)-\left(30n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)15n + 1 và 30n + 1 nguyên tố cùng nhau
\(\Rightarrow\dfrac{15n+1}{30n+1}\) tối giản
chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản n thuộc Z
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2laf p/s tối giản
Gọi d là ƯCLN(12n + 1; 30n + 2)
Khi đó : 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
<=> 60n + 5 chia hết cho d và 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d => 1 chia hết cho d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 => 12n + 1/60n + 2 là p/s tối giản
Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1
Gọi d là ƯCLN của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
suy ra (30n+2 )-(12n+1) chia hết cho d
= 30n+2-12n-1 chia hết cho d
=(30n-12n) + (2-1)chia hết cho d
=8n+1
8n chia hết cho d , 1 chia hết cho d
suy ra n= 8n thì 12n+1/30n+2laf p/s tối giản
chứng tỏ rằng các phân số sau đây bằng nhau:
a) n+1 phần 2n+3 (n thuộc Z)
b) 12n+1 phần 30n+2 (n thuộc Z)
c) 2n+3 phần 3n+5 (n thuộc Z)
mọi người giúp tui nhé!
chứng tỏ rằng 12n+1/30n+2 là phân số tối giản (với N thuộc Z)!
nhớ giúp nhé!