Những câu hỏi liên quan
LN
Xem chi tiết
TD
Xem chi tiết
TA
Xem chi tiết
LH
22 tháng 8 2019 lúc 22:27

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Bình luận (0)
H24
Xem chi tiết
PH
1 tháng 4 2017 lúc 17:17

<=> (x - 3) (x - 2) (x + 1) (2 x + 1) = 0

\(x=3;x=2;x=-1;x=-\frac{1}{2}\)

Bình luận (0)
DN
Xem chi tiết
YH
Xem chi tiết
TT
31 tháng 7 2015 lúc 21:56

a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0

<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0

<=> (x - 3)(4x^2 - x + 6) = 0

xét 2 th

. x - 3 = 0 <=> x = 3

. 4x^2 - x + 6 = 0

<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0

<=> (4x + 1/2)^2 = -23/4

.... phần sau bạn tự làm nhé 

vậy pt trên có nghiệm là ...

. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự

Bình luận (0)
TL
31 tháng 7 2015 lúc 22:01

c) => x3 + 2x2 - 6x - 12x + 4x + 8 = 0

=> (x3 + 2x2)  -  (6x + 12x)  + (4x + 8) = 0

=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0

=> (x +2).(x2  - 6x + 4) = 0

=> x+ 2 = 0 hoặc x - 6x + 4 = 0

+) x+ 2 =0 => x = -2

+) x - 6x + 4 = 0 => x - 2.x.3  + 9  - 5 = 0 => (x -3)2  = 5

=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)

=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)

vậy...

 

Bình luận (0)
PU
Xem chi tiết
NT
5 tháng 7 2023 lúc 23:41

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

Bình luận (0)
NT
Xem chi tiết
DH
14 tháng 8 2015 lúc 18:07

cái bài này tìm nghiệm là ra mà bạn

Bình luận (0)
H24
31 tháng 12 2016 lúc 15:04

câu trả lời của thu hương rất hay!

Mình làm được khổ nỗi lại chưa biết nghiệm là gì? @ thu hương có thể giải thích cho minh không

 hiihhi  

Bình luận (0)
NN
Xem chi tiết
MT
18 tháng 2 2016 lúc 20:56

bài đó có dạng

ax4+bx3+cx2+dx+e=0 (Với b=d hoặc b=-d)

Cách làm có nhìu cách tui chỉ rành một cách nên tui chỉ

Với b=d thì đặt t=x2+1

Với b=-d thì đặt t=x2-1

tự nguyên cứu tiếp đi

Bình luận (0)
MA
18 tháng 2 2016 lúc 21:13

ta xét thấy đây là phương trình đối xứng vì hệ số của các số hạng cách đều số hạng đầu và số hạng cuối bằng nhau (ví dụ 3x4 và 3 có cùng hệ số là 3, -13x3 và -13x có cùng hệ số là -13....)

cụ thể đây là phương trình đối xứng bậc chẵn (số hạng đàu có bậc chẵn là 4)

giải như sau

ta nhẩm thấy 0 không phải là nghiệm của phương trình nên chia cả hai vế cho x2 ta có

      3x2-13x+16-13/x + 3/x=0

<=>(3x^2 + 3/x^2) - (13x + 13/x) +16 =0

<=>3(x^2 + 1/x^2) - 13(x+1/x)=0

đặt x+1/x = a thì x^2+1/x^2=a^2 - 2 (cái này bạn dùng hằng đẳng thức (a+b)^2 để suy ra  nhé)

thay vào ta được

3a - 13(a^2 - 2) +16 = 0

3a - 13a^2 + 26 =0 

đến đây bạn giải a bằng cách đưa về phương trình tích rồi tìm x là xong

Bình luận (0)