Những câu hỏi liên quan
PT
Xem chi tiết
H24
31 tháng 1 2018 lúc 18:36

a)

Ta có: AE/AB = 6/18 = 1/3

           AD/AC = (18:2)/27 = 9/27 = 1/3

Xét ∆AED và ∆ABC có:

Chung góc BAC

AD/AC = AE/AB( = 1/3 )

Suy ra : ∆AED đồng dạng với∆ABC ( đpcm )

b)

Do hai tam giác trên đông dang nên ED/BC = AE/AB = AD/AC

Suy ra ED/BC = 1/3

Suy ra ED/30 = 1/3

Suy ra ED= 10cm

Bình luận (0)
PT
Xem chi tiết
PT
Xem chi tiết
DS
Xem chi tiết
NT
29 tháng 1 2024 lúc 10:09

a: Xét ΔABC có \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A và ΔMDC vuông tại M có

\(\widehat{MCD}\) chung

Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC

=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)

Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)

=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)

=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)

c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔBME~ΔBAC

=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)

=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)

=>BE=25(cm)

Ta có: BE=BA+AE

=>AE+18=25

=>AE=7(cm)

ΔCAE vuông tại A

=>\(CA^2+AE^2=CE^2\)

=>\(CE^2=7^2+24^2=625\)

=>\(CE=\sqrt{625}=25\left(cm\right)\)

Bình luận (0)
PT
Xem chi tiết
TG
Xem chi tiết
PT
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
GD
Xem chi tiết