DS

 

 

Cho tam giác ABC có AB = 18 cm, AC = 24 cm, BC = 30 cm. Gọi M là trung điểm BC. Qua M kẻ đg thẳng vuông góc vs BC cắt AC, AB lần lượt ở D, E.

a, CMR: tam giác ABC, tam giác MDC đồng dạng vs nhau.

b, Tính các cạnh tam giác MDC

c, Tính độ dài BE, EC

 

 

 

NT
29 tháng 1 2024 lúc 10:09

a: Xét ΔABC có \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A và ΔMDC vuông tại M có

\(\widehat{MCD}\) chung

Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC

=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)

Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)

=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)

=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)

c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔBME~ΔBAC

=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)

=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)

=>BE=25(cm)

Ta có: BE=BA+AE

=>AE+18=25

=>AE=7(cm)

ΔCAE vuông tại A

=>\(CA^2+AE^2=CE^2\)

=>\(CE^2=7^2+24^2=625\)

=>\(CE=\sqrt{625}=25\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
GD
Xem chi tiết
NC
Xem chi tiết
NL
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
LM
Xem chi tiết
NV
Xem chi tiết
LD
Xem chi tiết
TN
Xem chi tiết