Những câu hỏi liên quan
TD
Xem chi tiết
HH
23 tháng 9 2019 lúc 23:36

1/ ĐKXĐ:...

\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)

Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)

\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)

Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)

\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)

\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)

Vậy...

Câu dưới tương tự

Bình luận (0)
NT
Xem chi tiết
NN
3 tháng 4 2020 lúc 15:57

\(ĐKXĐ:0\le x\le1\)

Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có hpt : 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

\(\left(1\right)+\left(2\right)\) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (* ) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
IS
5 tháng 4 2020 lúc 18:53

https://www.facebook.com/khoi.nguyenduykhoi.399 ( face book mình ) kết bạn nhá r mình gửi bài làm cho 

ko chụp ảnh gửi trên OLM đc mà bài  này mình bày những chô trên OLm ko ghi đc 

Nên kết bạn . mình gửi ảnh cho

Bình luận (0)
 Khách vãng lai đã xóa
NN
5 tháng 4 2020 lúc 21:35

ĐKXĐ : \(0\le x\le1\)

Đặt : \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có HPT 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

(1) + (2) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (*) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết
DK
13 tháng 8 2019 lúc 20:01

bằng 1 nữa nha

Bình luận (0)
DQ
13 tháng 8 2019 lúc 20:07

lớp 9 a

Bình luận (0)
GL
13 tháng 8 2019 lúc 20:24

ĐK: \(x\ge0\)

\(PT\Leftrightarrow\frac{\sqrt{x+3}-\sqrt{x+2}}{1}+\frac{\sqrt{x+2}-\sqrt{x+1}}{1}+\frac{\sqrt{x+1}-\sqrt{x}}{1}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow x+3+x-2\sqrt{x^2+3x}=1\)\(\Leftrightarrow2x+2=2\sqrt{x^2+3x}\)

\(\Leftrightarrow x^2+2x+1=x^2+3x\)

\(\Leftrightarrow x=1\)

Vậy.........................

Bình luận (0)
ND
Xem chi tiết
NH
10 tháng 9 2016 lúc 22:00

Bạn tách phần trong căn ra, mình làm mẫu nhé

 x +2 căn ( x-1)= ( x-1) +2 căn (x-1) +1

= ( căn(x-1) -1)^2

k nha

Bình luận (0)
BL
Xem chi tiết
VH
1 tháng 7 2019 lúc 16:34

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

Bình luận (0)
H24
1 tháng 7 2019 lúc 17:02

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

Bình luận (8)
BL
1 tháng 7 2019 lúc 16:10

tth, Hoàng Tử Hà, Bonking, Akai Haruma, @Nguyễn Việt Lâm

Quoc Tran Anh Le

giúp mk vs!

mk cảm ơn nhiều!

Bình luận (0)
BL
Xem chi tiết
TP
30 tháng 6 2019 lúc 22:29

c) \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)

\(\Leftrightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}=x\)

\(\Leftrightarrow x^2+6+4\left(x^2-1\right)+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=x^2\)

\(\Leftrightarrow6+4x^2-4+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow4x^2+2+4\sqrt{\left(x^2+6\right)\left(x^2-1\right)}=0\)

\(\Leftrightarrow2x^2+2\sqrt{\left(x^2+6\right)\left(x^2-1\right)}+1=0\)

Dễ thấy \(VT>0\forall x\)

Do đó pt vô nghiệm

Bình luận (0)
AH
30 tháng 6 2019 lúc 22:20

Lời giải:
a)

ĐK: \(0\leq x\leq 1\)

PT \(\Leftrightarrow \sqrt{x+\sqrt{1-x}}=1-\sqrt{x}\)

\(\Rightarrow x+\sqrt{1-x}=1+x-2\sqrt{x}\) (bình phương 2 vế)

\(\Leftrightarrow \sqrt{1-x}-1+2\sqrt{x}=0\)

\(\Leftrightarrow \frac{-x}{\sqrt{1-x}+1}+2\sqrt{x}=0\)

\(\Leftrightarrow \sqrt{x}(2-\frac{\sqrt{x}}{\sqrt{1-x}+1})=0\)

Ta thấy \(\sqrt{1-x}+1\geq 1\Rightarrow \frac{\sqrt{x}}{\sqrt{1-x}+1}\leq \sqrt{x}\leq 1< 2\) với mọi $0\leq x\leq 1$

\(\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}>0\Rightarrow 2-\frac{\sqrt{x}}{\sqrt{1-x}+1}\neq 0\)

Do đó $\sqrt{x}=0\Leftrightarrow x=0$ là nghiệm duy nhất

b)

ĐK: \(1 \leq x\leq \frac{1+\sqrt{5}}{2}\) hoặc \(0\geq x\geq \frac{1-\sqrt{5}}{2}\)

PT \(\Rightarrow \left\{\begin{matrix} \sqrt{x}-1\geq 0\\ 1-\sqrt{x^2-x}=x-2\sqrt{x}+1\end{matrix}\right.\) (bình phương 2 vế)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 1(1)\\ x+\sqrt{x^2-x}-2\sqrt{x}=0(2)\end{matrix}\right.\)

(1) kết hợp với ĐKXĐ suy ra \(1\leq x\leq \frac{1+\sqrt{5}}{2}(*)\)

(2) \(\Leftrightarrow \sqrt{x}(\sqrt{x}+\sqrt{x-1}-2)=0\)

Từ $(*)$ suy ra $x\neq 0$. Do đó \(\sqrt{x}+\sqrt{x-1}-2=0\)

\(\Leftrightarrow \sqrt{x-1}=2-\sqrt{x}\)

\(\Rightarrow x-1=4+x-4\sqrt{x}\) (bình phương)

\(\Leftrightarrow 4\sqrt{x}=5\Rightarrow x=\frac{25}{16}\) (thỏa mãn $(*)$)

Vậy......


Bình luận (0)
BL
30 tháng 6 2019 lúc 21:55

@Nguyễn Việt Lâm, Hoàng Tử Hà, Bonking, tth, Vũ Huy Hoàng,

Akai Haruma, Ribi Nkok Ngok

giúp mk vs! cần gấp

Bình luận (0)
HC
Xem chi tiết
H24
1 tháng 12 2019 lúc 9:34

\(=\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)ĐK:\(x\ge-7\)

Đặt \(t=\sqrt{x+7}\left(t\ge0\right)\)

\(\Rightarrow t+1-4=\sqrt{t^2-t-6}\)

\(\Leftrightarrow t^2-6t+9=t^2-t-6\left(t\ge3\right)\)

\(\Leftrightarrow5t=15\)

\(\Leftrightarrow t=3\left(TM\right)\)\(\Rightarrow x=2\left(tm\right)\)

S={2}

b)ĐK:\(x\ge2\)

pt\(\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+2}-\sqrt{x-2-2\sqrt{x-2}+2}=-2\)

Đặt t= can(x-2)(t>=0)

Đến đây bạn giải tiếp nhé!

#Walker

Bình luận (0)
 Khách vãng lai đã xóa
KS
Xem chi tiết
HV
18 tháng 2 2020 lúc 9:33

ĐKXĐ:\(x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt[4]{x}-1\right)^2}+\sqrt{\left(\sqrt[4]{x}-3\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|=2\)

Ta có: \(\left|\sqrt[4]{x}-1\right|\ge\sqrt[4]{x}-1;\left|\sqrt[4]{x}-3\right|\ge3-\sqrt[4]{x}\)

\(\Rightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|\ge\sqrt[4]{x}-1+3-\sqrt[4]{x}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|\sqrt[4]{x}-1\right|=\sqrt[4]{x}-1\\\left|\sqrt[4]{x}-3\right|=3-\sqrt[4]{x}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}-1\ge0\\\sqrt[4]{x}-3\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt[4]{x}\ge1\\\sqrt[4]{x}\le3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le81\end{cases}\left(TMĐKXĐ\right)}}\)

Bình luận (0)
 Khách vãng lai đã xóa