cho a1 và a2 là 2 số nguyên tố lẻ liên tiếp (a1> a2)
chứng minh rằng:\(\frac{a1+a2}{2}\) là hợp số
Tìm 4 số nguyên tố liên tiếp tăng dần a1<a2<a3<a4 sao cho b=a1+a2 mũ 2+a3 mũ 2+a4 mũ 2 cũng là số nguyên tố
Tìm 4 số nguyên tố liên tiếp tăng dần a1<a2<a3<a4 sao cho b=a1+a2 mũ 2+a3 mũ 2+a4 mũ 2 cũng là số nguyên tố
Cho 2n số nguyên dương a1, a2, a3,......, a2n-1, a2n thỏa mãn:
a12 + a32 + a52 + ..... + a2n-12 = a22 + a42 + a562 + ..... + a2n2
Chứng minh rằng a1 + a2 + a3 + ...... + a2n-1 + a2n là hợp số (n \(\in\) N*)
Cho A1,A2,A3,A4,.....,A100 là các số nguyên thoả mãn A1+A2+A3+....+A100=2*2019
Chứng minh rằng : A1*2+A2*2+A3*2+.…..+A100*2 chia hết cho 2
\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2
\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)
\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)
\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)
=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)
Ta luôn luôn có :
n²-n=n.n-n=n×(n-1)
Nxét:n và n-1 là 2 số tự nhiên liên tiếp⇒n×(n-1)⋮ 2 (1)
\(\Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a-\left(a_1+a_2+a_3+...+a_{100}\right)\\ \Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}-\left(a_1-a_2-a_3-...-a_{100}\right)\\ \Rightarrow S=\left(a\dfrac{2}{1}-a_1\right)+\left(a\dfrac{2}{2}-a_2\right)+\left(a\dfrac{2}{3}-a_3\right)+...\left(a\dfrac{2}{100}-a_{100}\right)⋮2\)
\(\Rightarrow a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}⋮2\)
Cho 23 số nguyên khác 0: a1;a2;a3;.....;a23 có tính chất:
+ a1 dương
+Tổng 3 số liên tiếp bất kì dương
+Tổng cả 23 số là âm
Chứng minh: a2 âm và a3 dương.
Cho a1+a2+...+a100 là các số nguyên thỏa mãn điều kiện a1+a2+...+a100=2^2015.
Chứng tó rằng a1^2+a2^2+...+a100^2 chia hết cho 2
Cho a1, a2,..., a2003 là các số nguyên b1, b2,..., b2003 là các cách sắp xếp theo thứ tự khác của a1, a2,..., a2003.
Chứng minh rằng: P = (a1 - b1)(a2 - b2)...(a2003 - b2003) là một số chẵn.
xin loi ban minh cung muon giai giup ban lam nhung minh moi hoc lop 5 thoi
cho n số nguyên a1,a2,a3,...,an
chứng minh rằng
S=|a1-a2|+|a2-a3|+...+|an-1-an|+|an-a1|
mấy số đằng sau a là số thứ tự nhé
Cho 4 số khác 0 là a1;a2;a3;a4 thỏa mãn a2^2= a1.a3 ; a3^2=a2.a4. Chứng minh rằng: a1^3+a2^3+a3^3 / a2^3+a3^3+a4^3= a1 / a4