Những câu hỏi liên quan
VM
Xem chi tiết
NA
15 tháng 12 2018 lúc 22:33

1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh

Bình luận (0)
NA
15 tháng 12 2018 lúc 23:27

2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.

Bình luận (0)
NL
Xem chi tiết
NB
20 tháng 11 2019 lúc 14:09

Các cụ cho con bỏ câu này

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 11 2019 lúc 14:19

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

Bình luận (0)
 Khách vãng lai đã xóa
NL
12 tháng 9 2021 lúc 15:13

khó.......................................qáu

Bình luận (0)
 Khách vãng lai đã xóa
WC
Xem chi tiết
LV
Xem chi tiết
LA
Xem chi tiết
ND
21 tháng 10 2015 lúc 21:03

N=5.5.5.5.5.......5.5-1

N=A25-1

N=a24chia hết cho 4 (DPCM)

Bình luận (0)
BF
Xem chi tiết
PK
24 tháng 6 2018 lúc 16:59

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la số t­­­­­­­­­­ự nhiên thì n.2+n+1 ko chia hết cho 9 

Bình luận (0)
H24
Xem chi tiết
LA
Xem chi tiết
DT
21 tháng 10 2015 lúc 20:48

n2+3n=n(n+3)

Nếu n lẻ => n+3 chẵn

Nếu n chắn => n chẵn

=> đpcm

Bình luận (0)
KP
Xem chi tiết
VP
25 tháng 8 2018 lúc 20:39

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\))

Vì (n-1)n(n+1) là tích của ba số tự nhiên liên tiếp nên tồn tại 1 bội của, 1 bội của 3

Mà ƯC(2,3)=1

Suy ra n^3-n chia hết cho 2*3=6

Bình luận (0)
KM
25 tháng 8 2018 lúc 20:48

Ta có \(n^3-n=n.\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)

Vì \(n-1;n;n+1\)là 3 số nguyên liên tiếp 

Suy ra \(\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3

Mặt khác\(n-1;n;n+1\)là 3 số nguyên liên tiếp suy ra có ít nhất một số chẵn

Do đó \(\left(n-1\right).n.\left(n+1\right)⋮2\)

Vì \(\text{Ư}CLN\left(2;3\right)=1\)suy ra \(\left(n-1\right).n.\left(n+1\right)⋮6\)

Khi đó \(n^3-n⋮6\)

Vậy....

Bình luận (0)