Rút gọn phân thức: \(\dfrac{2a^3-7a^2-12a+45}{3a^3-19a^2+33a-9}\)
p=3a^3-14a^2=3a+36/3a^3-19a^2+33a+9 rút gọn
Rút gọn phân thức a^3-3a+2/2a^3-7a^2+8a-3
\(\dfrac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
\(=\dfrac{a^3-a-2a+2}{2a^3-2a^2-5a^2+5a+3a-3}\)
\(=\dfrac{a\left(a-1\right)\left(a+1\right)-2\left(a-1\right)}{2a^2\left(a-1\right)-5a\left(a-1\right)+3\left(a-1\right)}\)
\(=\dfrac{\left(a-1\right)\left(a^2+a-2\right)}{\left(a-1\right)\left(2a^2-5a+3\right)}\)
\(=\dfrac{\left(a+2\right)\left(a-1\right)}{\left(a-1\right)\left(2a-3\right)}\)
\(=\dfrac{a+2}{2a-3}\)
rút gọn phân thức
\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
Tử = \(a^3-3a+2=a^3-1-3a+3\)
\(=\left(a-1\right)\left(a^2+a+1\right)-3\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2+a-2\right)\)
\(=\left(a-1\right)\left(a-1\right)\left(a+2\right)=\left(a-1\right)^2\left(a+2\right)\)
Mẫu =\(2a^3-7a^2+8a-3=2a\left(a^2-2a+1\right)-3\left(a^2-2a+1\right)\)
\(=\left(a-1\right)^2\left(2a-3\right)\)
=>\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}=\frac{\left(a-1\right)^2\left(a+2\right)}{\left(a-1\right)^2\left(2a-3\right)}=\frac{a+2}{2a-3}\)
Nhớ h cho mik nhé
Rút gọn các biểu thức sau( với a và b không âm)
a)√3a^3.√12a
b)√2a.32ab^2
a) \(\sqrt{3a^3}\cdot\sqrt{12a}=\sqrt{3a^3\cdot12a}=\sqrt{36a^4}=6a^2\)
b) \(\sqrt{2a\cdot32ab^2}=\sqrt{64a^2b^2}=8ab\)
rút gọn biểu thức:\(\sqrt{4a^2+12a+9}+\sqrt{4a^2-12a+9}\) với\(-\dfrac{3}{2}\le a\le\dfrac{3}{2}\)
giúp tui nha,tui đang gấp lắm
\(\sqrt{4a^2+12a+9}+\sqrt{4a^2-12a+9}\) với \(-\dfrac{3}{2}\le a\le\dfrac{3}{2}\)
\(\sqrt{\left(2a+3\right)^3}+\sqrt{\left(2a-3\right)^3}\)
\(\left|2a+3\right|+\left|2a-3\right|\)
\(2a+3-2a+3\)
\(6\)
rút gọn rồi tính giá trị của biểu thức
A=2a^3-12a^2+17a-2/a-2
biết a là nghiệm của phương trình giá trị tuyệt đối của a^2-3a+1=1
Rút gọn các biểu thức sau
b) 7a.(3a-5)+(2a-3)(4a+1)-(6a-2)2
\(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-36a^2+24a-4\)
\(=-7a^2+4a-7\)
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)