Những câu hỏi liên quan
PB
Xem chi tiết
CT
24 tháng 7 2018 lúc 14:41

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 11 2019 lúc 7:01

Bình luận (0)
NA
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 10 2018 lúc 9:35

Chọn A.

Ta có:

+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.

+ sin4x + cos4x = 1 - 3sin2x.cos2x.

Do đó

A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.

Bình luận (0)
TH
Xem chi tiết
NL
23 tháng 4 2021 lúc 21:23

\(P=\dfrac{-2sin5x.sinx-sinx}{2sin5x.cosx+cosx}=\dfrac{-sinx\left(2sin5x+1\right)}{cosx\left(2sin5x+1\right)}=-tanx\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 8 2019 lúc 9:31

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

f(x) = 1 ⇒ f′(x) = 0

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 8 2017 lúc 9:49

Đáp án B

Ta có  y = sin 6 x + cos 6 x + 3 sin 2 x c os 2 x = 1 − 3 4 sin 2 2 x + 3 4 sin 2 2 x = 1 ⇒ y ' = 0.

Bình luận (0)
NA
Xem chi tiết
NT
20 tháng 8 2023 lúc 15:37

\(A=3\left[\left(sin^2x+cos^2x\right)^2-2\cdot sin^2x\cdot cos^2x\right]-2\left[\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)\right]\)
 

\(=3\left[1-2\cdot sin^2x\cdot cos^2x\right]-2\left[1-3\cdot sin^2x\cdot cos^2x\right]\)

\(=3-6\cdot sin^2x\cdot cos^2x-2+6\cdot sin^2x\cdot cos^2x\)

=1

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2017 lúc 11:17

a, Ta có:  sin 4 x + cos 4 x = sin 2 x + cos 2 x 2 - 2 sin 2 x . cos 2 x = 1 - 2 sin 2 x . cos 2 x

b, Ta có:  sin 6 x + cos 6 x = sin 2 x + cos 2 x 3 - 3 sin 2 x cos 2 x sin 2 x + cos 2 x =  1 - 3 sin 2 x cos 2 x

Bình luận (0)