Những câu hỏi liên quan
KB
Xem chi tiết
H24
Xem chi tiết
LT
11 tháng 3 2018 lúc 8:45

Cộng hai vế ta được: 5(x+y+z)+2y=5045

Để  5(x+y+z) lớn nhất thì 2y nhỏ nhất

Mà 2y lớn hơn hoặc bằng 0 nên 2ymin=0

=>  5(x+y+z)max=5045=> A=x+y+z=5045 <=> y=0 => x=1012 => z=-1

Bình luận (0)
VN
Xem chi tiết
NM
7 tháng 9 2021 lúc 7:40

\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)

Bình luận (2)
AH
7 tháng 9 2021 lúc 7:48

Lời giải:

Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$

$\Rightarrow H\leq \frac{z(4-z)^2}{4}$

Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$

$4-z\leq 2$ do $z\geq 2$

$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$

Hay $H\leq 2$ 

Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$

Bình luận (0)
MB
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
BH
Xem chi tiết
H24
29 tháng 9 2019 lúc 9:18

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

Bình luận (0)
BH
30 tháng 9 2019 lúc 9:59

dit me may 

Bình luận (1)
LK
19 tháng 7 2020 lúc 19:01

bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ? 

Bình luận (0)
 Khách vãng lai đã xóa
TC
Xem chi tiết
NL
8 tháng 4 2022 lúc 19:25

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
NH
Xem chi tiết
KK
28 tháng 10 2020 lúc 22:21

a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)

Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)

Vật bất đẳng thức được chứng minh

Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa