Cho a,b,c là các số hữu tỉ khác 0 sao cho\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b,c là các số hữu tỉ khác 0, sao cho:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Theo t/ch DTSBN ta có
(a+b-c+a-b+c-a+b+c)/(c+b+a)
=(a+b+c)/(a+b+c)=1
Ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(\Rightarrow\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Cho a,b,c là các số hữu tỉ khác 0 sao cho:\(\frac{a+b+c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)Tính giá trị bằng số của biểu thức M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng tính chất dãy tủ số bằng nhau, ta có:
\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1
=>\(\frac{a+b-c}{c}\) = 1
a+b-c = c
a+b =2c
=>\(\frac{a-b+c}{b}\) = 1
a-b+c = c
a+c =2b
=>\(\frac{-a+b+c}{a}\) = 1
-a+b+c = a
b+c =2a
Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:
M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8
Cho a ; b ; c là các số hữu tỉ khác 0 sao cho \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
có:a+b-c /c= a-b+c / b = -a+b+c / a = a+b-c+a-b+c -a+b+c / c+b+a = a+b+c / c+b+a=1
=> a+b-c/ c =1 => a+b-c = c => a+b = c+c=2c
a-b+c/ b =1 => a-b+c= b => a+c = b+b= 2b
-a+b+c / a =1 => -a+b+c = a => b+c =a+a=2a
có M= ( a+b)(b+c)(c+a) / abc
= 2c . 2a . 2b / abc
= 8abc/abc
=8
vậy M=8
= 2c . 2a.
câu cuối sau phần kết luận = 2c . 2a bỏ nha ( viết vội quá)
Cho a,b,c là các số hữu tỉ khác 0 sao cho \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tìm giá trị bằng số của biểu thức:
\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) (Tính chất dãy các tỉ số bằng nhau) Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)
Cho a, b, c là các số hữu tỉ khác 0 và a = b + c.
C/m: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là một số hữu tỉ.
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Cho a,b,c là các số hữu tỉ khác 0 saon cho : \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính: M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Leftrightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
TH1. Nếu a + b + c = 0 thì : \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)
TH2. Nếu \(a+b+c\ne0\) thì a = b = c
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a^3}=8\)
Cho a,b,c là các số hữu tỉ khác 0, sao cho:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính giá trị bằng số của một biểu thức \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b-c+c=c+c\\a-b+b+c=b+b\\-a+a+b+c=a+a\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}}}\)
Thay các tổng a + b ; a + c ; b + c vào biểu thức M , ta có :
\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)
Đề bài :
Cho a;;b;c là các số hữu tỉ khác 0 sao cho :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính giá trị bằng số của một biểu thức:
\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
=> \(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)
\(\frac{a-b+c}{b}=1\Rightarrow a+c=2b\)
\(\frac{-a+b+c}{a}=1\Rightarrow b+c=2a\)
Vậy \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)
Cho a,b,c là các số hữu tỉ khác 0 và a+b+c khác 0 sao cho:
\(\frac{a+b+2c}{c}=\frac{a+2b+c}{b}=\frac{2a+b+c}{a}\)
Tính giá trị của biểu thức \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Các bạn giúp mình với mai mình phải nộp cho cô rồi
2Sử dụng t/c dãy tỉ số bằng nhau ta dễ dàng CM tất cả đều = 3
->a+b+2c = 4c -> a+b=2c
Tương tự -> b+c = 2a và a+c=2b
Thay vào M tính được M = 8abc/abc = 8
Mik sửa lại 1 chút, sd t/c dãy tỉ số bằng nhau cm được tất cả =4