Những câu hỏi liên quan
H24
Xem chi tiết
PL
Xem chi tiết
TT
Xem chi tiết
SK
23 tháng 12 2017 lúc 22:24

Giá trị lớn nhất của x trong tập hợp giá trị của x là 11

Giá trị nhỏ nhất của y trong tập hợp giá trị của y là -89

GTLL của hiệu x-y là : 11 - (-89)=100

Giá trị nhỏ nhất  của x trong tập hợp giá trị của x là :-2

Giá trị lớn nhất của y trong tập hợp giá trị của y là : 1

GTNN của hiệu x-y là : -2 -1=-3

Bình luận (0)
H24
Xem chi tiết
NC
27 tháng 10 2020 lúc 9:18

\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)

\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)

\(\ge1+\frac{13}{4}=\frac{17}{4}\)

Dấu "=" xảy ra <=> x = y = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
LP
Xem chi tiết
KS
28 tháng 7 2018 lúc 13:28

 \(A=2018-\left|x-7\right|-\left|y+2\right|\)

Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)

\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)

Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)

Tham khảo~

Bình luận (0)
DH
Xem chi tiết
NL
28 tháng 1 2019 lúc 20:47

Áp dụng \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)

Ta có \(P=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\)

\(\Rightarrow P=1-3x^2y^2\ge1-3\dfrac{\left(x^2+y^2\right)^2}{4}=\dfrac{1}{4}\)

\(\Rightarrow P_{min}=\dfrac{1}{4}\) khi \(x^2=y^2=\dfrac{1}{2}\)

Bình luận (0)
DB
Xem chi tiết
KB
6 tháng 9 2018 lúc 22:45

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Bình luận (0)
HA
Xem chi tiết