giải phương trình
\(\sqrt{2x-1}=18-13x+2x^2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải phương trình :
a,\(\sqrt{2x^2+13x+5}+\sqrt{2x^2-3x+5}=8\sqrt{x}\)
b, \(\sqrt{x^2-\dfrac{4}{3}}+2\sqrt{x^2-1}=x\)
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)
Giải phương trình: \(x^2-2\sqrt{2x-1}=\frac{13x^2-28x+24}{2x+1}\)
Giải phương trình: \(\sqrt{2x^2+16+18}+\sqrt{x^2+1}=2x+4\)
\(\sqrt{2x^2+16x+18}+\sqrt{x^2+1}=2x+4\left(1\right)\)
\(ĐK:x\in R\)
\(pt\left(1\right)\Leftrightarrow2x^2+16x+18+x^2+1+2\sqrt[]{(2x^2+16x+18)\left(x^2+1\right)}=4x^2+16x+16\)
\(\Leftrightarrow3+2\sqrt{(2x^2+16x+18)\left(x^2+1\right)}=x^2\)
\(\Leftrightarrow2\sqrt{(2x^2+16x+8)\left(x^2+1\right)}=x^2-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3\ge0\\4\left(2x^2+16x+8\right)\left(x^2+1\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{3}\le x\le\sqrt{3}\\4\left(2x^4+16x^3+10x^2+16x+8\right)=x^4-6x^2+9\end{matrix}\right.\)
\(\Leftrightarrow7x^4+64x^3+46x^2+64x+23=0\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
Giải phương trình : \(x^2-2\sqrt{2x-1}=\frac{13x^2-28x+24}{2x+1}\)
Mk cần gấp, ai nhanh mk tick
Giải phương trình:
\(\sqrt{x+4}+\sqrt{6-x}=2x^2-13x^2+17\)
Giải các phương trình sau:
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)
\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn
Vậy phương trình vô nghiệm
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn
Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)
\( \Leftrightarrow x = 0\) hoặc \(x = 3\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn
Vậy nghiệm của phương trình là x=3
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
Giải các hệ phương trình sau: 2 x + 3 = 2 y + 1 + 1 3 x - y + 1 = 2 x - 2 + 3