Cho tam giác ABC nhọn có các đường cao BE, CF cắt nhau tại trực tâm H; AM là đường trung tuyến. Đường thẳng EF và đường thẳng BC cắt nhau tại I. Chứng minh rằng IH vuông góc với AM.
Cho tam giác ABC nhọn có các đường cao BE, CF cắt nhau tại trực tâm H; AM là đường trung tuyến. Đường thẳng EF và đường thẳng BC cắt nhau tại I. Chứng minh rằng IH vuông góc với AM.
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H chứng minh:
A, tam giác ABE vuông góc với tâm giác ACF
B, AEF = ABC
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Chứng minh H là tâm đường tròn nội tiếp tam giác DEF.
Đề thì đúng nhưng đề này là đề học sinh giỏi thì thường quá!
Bạn chỉ cần dùng tứ giác nội tiếp là sẽ ra \(DH\) là phân giác \(\widehat{EDF}\) (tin mình đi). Tương tự với mấy đỉnh kia suy ra đpcm.
sai đề rồi đáng lẽ ABC là tam giác đều hoặc các đường cao AD BE CF là những đường trung trực
Đề đúng đó bạn, đề học sinh giỏi mà.
Cho tam giác ABC nhọn. 3 đường cao AD, BE, CF cắt nhau tại H. M là trung điểm BC. S là giao điểm của EF và BC. Chứng minh rằng H là trực tâm của tam giác ASM.
Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.
Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.
Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.
Vì H là giao điểm của AD và BE, ta có AH ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.
Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).
Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.
Vậy, H là trực tâm của tam giác ASM.
cho tam giác abc (ab<ac) hai đường cao be,cf của tam giác abc cắt nhau tại h. c/m: trực tâm, trọng tâm và giao điểm các đường trung tuyến của tam giác abc thẳng hàng
Vẽ các đường trung tuyến AM và BK cắt nhau tại G
Gọi I là giao đường trung trực IK và IM
Mik chỉ viết gợi ý chứng minh thôi nha
1) CM tam giác AHB đồng dạng tam giác MIK
2) CM tam giác HAG đồng dạng IMG
3) CM được H,G,I thằng hàng bằng cách CM góc HGI=180 độ. Cm bằng những góc tương ứng của các cặp tam giác đồng dạng
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
\(\rightarrow\) Gấp Ạ!
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O. Các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh : tứ giác AEHF, BFEC nội tiếp đường tròn
b) Đường thẳng AO cắt đưởng tròn tâm O tại K khác điểm A . Gọi I là giao điểm của 2 đường thẳng HK và BC . Chứng minh I là trung điểm của đoạn BC
c) Tính : AH/AD + BH/BE + CH/CF ( bỎ QUA phần này cũng đc ạ )
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
tam giác ABC nhọn nội tiếp đường tròn tâm O, các đường cao AD,BE,CF, trực tâm H, CH cắt đường tròn tại G, GD cắt đường tròn tại K, AK cắt DE tại M .chứng minh M là trung điểm của DE
Cho tam giác nhọn ABC có ba đường cao AD, BE,CF cắt nhau tại H. Gọi M, N, P, Q, R, S lần lượt là trung điểm các đoạn thẳng BC, CA, AB, HA, HB, HC. Các đường trung trực của tam giác ABC cắt nhau tại O.
a) BHCK, AQMO là hình gì?
b) Chứng minh PQRS, MNQR, NPRS là hình chữ nhật
c) Chứng minh MQ, OH, RN đồng quy tại 1 điểm.
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành