Những câu hỏi liên quan
PT
Xem chi tiết
BM
Xem chi tiết
PT
Xem chi tiết
NT
12 tháng 1 2024 lúc 18:56

1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

2: Ta có: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=10^2-6^2=64\)

=>\(HA=\sqrt{64}=8\left(cm\right)\)

3: Xét ΔAHN có

AF là đường cao

AF là đường trung tuyến

Do đó: ΔAHN cân tại A

=>AH=AH

4: Xét ΔAHM có

AE là đường trung tuyến

AE là đường cao

Do đó: ΔAHM cân tại A

=>AM=AH

Ta có: ΔAHN cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAN

=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)

Ta có: ΔAHM cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAM

=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)

Ta có: AM=AH

AH=AN

Do đó: AM=AN

Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)

=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)

Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ

=>góc MAN=180 độ

=>\(2\cdot\widehat{BAC}=180^0\)

=>\(\widehat{BAC}=90^0\)

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 3 2022 lúc 10:27

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

Bình luận (0)
HT
Xem chi tiết
NT
13 tháng 7 2023 lúc 11:01

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: BH=CH=12/2=6cm

=>AC=căn AH^2+HC^2=10cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

Bình luận (0)
HT
Xem chi tiết
KK
27 tháng 3 2022 lúc 14:33
 

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Chứng minh

a) Xét tam giác AHB và tam giác AHC có:

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Bình luận (0)
KK
27 tháng 3 2022 lúc 14:39

b) có tam giác ABC cân tại A

=> AB=AC

có BC=BH+HC

=> BC=12:2=6(cm)

=> BH=6;HC=6

có tam giác AHC

=> áp dụng định lí pytago có 

=>AH2+HC2=AC2

=>82+62=AC2

=>AC2=102

=>AC=10

Bình luận (0)
H24
Xem chi tiết
NQ
Xem chi tiết
NT
16 tháng 6 2023 lúc 0:16

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 2 2022 lúc 18:46

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)

Bình luận (0)
UT
12 tháng 2 2022 lúc 18:48
Bình luận (0)
HP
12 tháng 2 2022 lúc 18:51

a. Ta có: BC2=AB2+AC2, suy ra tam giác ABC vuông tại A.

b. Ta có: AB.AC=AH.BC, suy ra AH=AB.AC/BC=20.48/52=240/13.

Bình luận (0)
NT
Xem chi tiết
YN
18 tháng 3 2022 lúc 0:59

`Answer:`

Sửa đề phần c: Chứng minh KF//BC.

C H B A F K

a. Xét `\triangleAHB` và `\triangleAHC`

`AH` chung

`\hat{AHB}=\hat{AHC}=90^o`

`AB=AC`

`=>\triangleAHB=\triangleAHC(ch-cgv)`

b. Xét `\triangleFAH` và `\triangleKAH`

`AH` chung

`\hat{FAH}=\hat{KAH}`

`\hat{AFH}=\hat{AKH}=90^o`

`=>\triangleFAH=\triangleKAH(ch-gn)`

`=>HK=HF`

c. Theo phần b. `\triangleFAH=\triangleKAH`

`=>AF=AK`

`=>\triangleAFK` cân ở `A`

Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`

`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)

Bình luận (0)
 Khách vãng lai đã xóa

hình tự vẽ nhé.

xét: \(\Delta AHB\) VÀ   \(\Delta AHC\) CÓ:

\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)

\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)

b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)

XÉT: \(\Delta KBH\)VÀ    \(\Delta FCH\) CÓ:

\(BH=CH\left(cmt\right)\)

​​\(\widehat{BKH}=\widehat{CFH}=90^0\)

\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)

\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)

\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)

c) ta có:  \(AB=AC;;BK=FK\left(cmt\right)\)

\(\Rightarrow AB-BK=AC-FC\)

\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A

\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)

TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

​mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa