Những câu hỏi liên quan
LL
Xem chi tiết
VX
Xem chi tiết
NL
19 tháng 6 2019 lúc 19:12

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (1)
NL
23 tháng 6 2019 lúc 14:52

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

Bình luận (0)
PL
Xem chi tiết
DW
3 tháng 1 2019 lúc 18:49

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

Bình luận (1)
AH
4 tháng 1 2019 lúc 0:56

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
AH
4 tháng 1 2019 lúc 0:59

Bài 2:

Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)

\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)

\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)

Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
BF
Xem chi tiết
IY
2 tháng 9 2018 lúc 21:27

ta có: (a+b+c)2 = a2 + b2 + c2

=> 2.(ab+ac+bc) = 0

ab + ac + bc = 0

=> 1/a + 1/b + 1/c = 0

Lại có: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right).\)

                                                                \(=0.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{ac}-\frac{1}{bc}\right)=0\)

=> 1/a3 + 1/b3 + 1/c3  -3/abc = 0

=> 1/a3 + 1/b3 + 1/c3 = 3/abc

Bình luận (0)
NB
Xem chi tiết
ST
19 tháng 6 2018 lúc 10:52

Ta có: (a+b+c)2=a2+b2+c2

<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2

<=>ab+bc+ca=0

<=>\(\frac{ab+bc+ca}{abc}=0\)

<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)

<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)

Thay (1) vào (2) ta đc:

\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)

<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

Bình luận (0)
LT
19 tháng 6 2018 lúc 10:20

toán lớp 7 có cái này hả??

Ta có:\((a+b+c)^2=a^2+b^2+c^2\)

      <=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

      <=>\(ab+ac+bc=0\)

Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên

Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)

Nhân với abc cả hai vế

\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)

<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)

mà ab+ac+bc=0 

=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)

<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)

<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)

<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)

<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)

<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)

tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0 

Ta có \(ab+ac+bc=0\)(1)

mà a,b,c  khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)

=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)

=>\({1\over a}+ {1\over b}+ {1\over c}=0\)

Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được 

Bình luận (0)
H24
5 tháng 1 2021 lúc 22:57

lô có ai ko vậy giải cách khác đi

Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
H24
31 tháng 7 2019 lúc 9:59

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

Bình luận (0)
H24
31 tháng 7 2019 lúc 10:00

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

Bình luận (0)
H24
31 tháng 7 2019 lúc 9:57

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Do VT >=0 với mọi a, b, c nên a = b = c 1

tí đăng tiếp

Bình luận (0)
HK
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
TT
19 tháng 12 2020 lúc 21:44

Từ đkđb

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)

\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

Bình luận (0)
TV
19 tháng 12 2020 lúc 21:46

Hớ hớ bài này mình cũng làm rồi.

Ta có: (a+b+c)2=a2+b2+c2

<=> a2+b2+c2+2(ab+bc+ca)=a2+b2+c2

<=>2(ab+bc+ca)=0

<=>ab+bc+ca=0

\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=>\(\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)

=> \(\dfrac{1}{a^3}+\dfrac{3}{a^2b}+\dfrac{3}{ab^2}+\dfrac{1}{b^3}=-\dfrac{1}{c^3}\)

=>\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=\dfrac{3}{abc}\)

=> Đpcm.

Bình luận (0)