1.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) có BE và CF là 2 đường cao cắt nhau tại H.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn có tầm là I. Xác định vị trí của I
b) Tia AH cắt BC tại D. Chứng minh rằng : EB là tia phân giác của góc DEF
c) Vẽ tiếp tuyến xAy của (O). Chứng minh rằng OA vuông góc với EF
d) Đường thằng EF cắt (O) tại N và M (điểm F nằm giữa N,E ). Chứng minh rằng AN là tiếp tuyến của đường tròn ngoại tiếp tam giác NHD1.Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) có BE và CF là 2 đường cao cắt nhau tại H.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn có tầm là I. Xác định vị trí của I
b) Tia AH cắt BC tại D. Chứng minh rằng : EB là tia phân giác của góc DEF
c) Vẽ tiếp tuyến xAy của (O). Chứng minh rằng OA vuông góc với EF
d) Đường thằng EF cắt (O) tại N và M (điểm F nằm giữa N,E ). Chứng minh rằng AN là tiếp tuyến của đường tròn ngoại tiếp tam giác NHD