Những câu hỏi liên quan
DH
Xem chi tiết
OO
1 tháng 9 2015 lúc 15:03

minh mới giải được phần đầu thui nhe!!!!!!!

Ta có: a+b+c=a^2+b^2+c^2=1
Vì x:y:z=a:b:c nên ta có:
x/a=y/b=z/c
Áp dcụng công thức của dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=(x+y+z)/1=x+y+z

Bình luận (0)
NQ
Xem chi tiết
VK
Xem chi tiết
ML
11 tháng 7 2015 lúc 19:45

Do \(x:y:z=a:b:c\)

Nên nếu \(x=ka\) thì \(y=kb;\text{ }z=kc\)

Khi đó: 

\(\left(x+y+z\right)^2=\left[k\left(a+b+c\right)\right]^2=k^2\)

\(x^2+y^2+z^2=k^2\left(a^2+b^2+c^2\right)=k^2\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)

Bình luận (0)
HN
Xem chi tiết
TD
Xem chi tiết
PD
Xem chi tiết
DT
28 tháng 12 2014 lúc 12:40

minh mới giải được phần đầu thui nhe!!!!!!!
Ta có: a+b+c=a^2+b^2+c^2=1
Vì x:y:z=a:b:c nên ta có:
x/a=y/b=z/c
Áp dcụng công thức của dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=(x+y+z)/1=x+y+z

 

Bình luận (0)
MA
Xem chi tiết
NM
Xem chi tiết
SG
26 tháng 11 2016 lúc 20:57

Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)

Lại áp dụng tính chất của dãy tỉ số = nhau có:

\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\left(2\right)\)

Từ (1) và (2) => (x + y + z)2 = x2 + y2 + z2 (đpcm)

 

Bình luận (0)
LP
Xem chi tiết
TN
7 tháng 12 2015 lúc 15:23

a + b + c = a+ b+c= 1 nên có 1 số hạng bằng 1 và hai số hạng bằng 0

Mà tỷ số x:y:z = a:b:c nên x, y, z phải có hai số hạng bằng 0

VD x:y:z=0:0:1 thì x=y=0

Vậy x,y,z cũng có hai số hạng bằng 0

Vậy phép tính trên luôn đúng 

Bình luận (0)