Phân tích đa thức thành nhân tử : x^2 – xy(a + b) + aby^2
Phân tích đa thức thành nhân tử : (xy + 1)^2 – (x + y)^2
\(\left(xy+1\right)^2-\left(x+y\right)^2=\left(xy+1-x-y\right)\left(xy+1+x+y\right)=\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]=\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)\)
\(\left(xy+1\right)^2-\left(x+y\right)^2\)
\(=\left(xy-x-y+1\right)\left(xy+1+x+y\right)\)
\(=\left(y-1\right)\left(x-1\right)\left(y+1\right)\left(x+1\right)\)
phân tích đa thức thành nhân tử:
(xy+1)^2 -(x+y)^2
Ta có: ( xy+1)^2 - (x+y)^2
= x^2.y^2 + 2xy + 1^2 - x^2 -2xy - y^2
= x^2. y^2 - x^2 - y^2 +1
= x^2( y^2 - 1) - (y^2 -1)
= (x^2 - 1)(y^2-1)
Phân tích đa thức thành nhân tử
ab(x2+y2)+xy(a2+b2)
ab(x2+y2)+xy(a2+b2)
\(=abx^2+aby^2+a^2xy+b^2xy=\left(abx^2+a^2xy\right)+\left(aby^2+b^2xy\right).\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)=\left(ax+by\right).\left(ay+bx\right)\)
Phân tích các đa thức sau thành nhân tử :
a) 2x2-3x-2
b) x2+xy-y2
a) Đây là tam thức bạc 2
Để phân tích nó thành nhân tử được dễ dàng trước hết ta nhẩm nghiệm của nó
Nghiệm nhẩm là ước của hệ số tự do
Ở đây hệ số tự do là -2. Nhẩm ngay được 1 nghiệm của đa thức là 2. Vậy khi phân tích thành nhân tử đa thức chứa thừa số
x - 2.
Vậy bài này giải như sau:
2x2 -3x -2 = (2x2 -4x) + ( x- 2) = 2x( x-2) + (x-2) = (x-2) (2x+1)
b) Đây là đa thức có tính gần đối xứng hoặc đối xứng
Vì vậy đề bài của bạn bị sai rồi
Tất cả đều có phương pháp chung một cách dễ dàng,
Mình không thể diễn giải đầy đủ cho bạn phương pháp ở đây vì quá dài.
Nếu muốn bạn có thể gọi điện cho mình, mình sẽ hướng dẫn chi tiết cho. Bạn hãy nhắn tin vào hộp thư của mình nhé.
Mình nhắn lại SĐT cho.
a) 2x2-3x-2
=2x2_4x +x-2
=(2x2_ 4x)+(x-2)
=2x(x-2) +(x-2)
=(x-2) (2x+1)
Đa thức được phân tích thành nhân tử là
. . .x²y + xy² - x - y
= (x²y + xy²) - (x + y)
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
Phân tích đa thức thành nhân tử : (ab - 1)^2 + (a + b)^2
\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2+b^2+a^2b^2+1=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)
\(\left(ab-1\right)^2+\left(a+b\right)^2=a^2b^2-2ab+1+a^2+2ab+b^2=a^2b^2+a^2+b^2+1=\left(a^2b^2+a^2\right)+\left(b^2+1\right)=a^2\left(b^2+1\right)+\left(b^2+1\right)=\left(a^2+1\right)\left(b^2+1\right)\)
\(\left(ab-1\right)^2+\left(a+b\right)^2\)
\(=a^2b^2+1+a^2+b^2\)
\(=\left(a^2+1\right)\left(b^2+1\right)\)
Phân tích đa thức thành nhân tử : 4ab(a + x)(b + x)
\(=4ab\left(ab+ax+bx+x^2\right)=4a^2b^2+4a^2bx+4ab^2x+4abx^2\)
phân tích đa thức thành nhân tử
-7xy+x\(^2\)+10y\(^2\)
\(=x^2-2xy-5xy+10y^2=x\left(x-2y\right)-5y\left(x-2y\right)=\left(x-2y\right)\left(x-5y\right)\)
Phần tích đa thức thành nhân tử
A, x^2-3xy
B, (x+5)^2-9
C, xy+xz-2y-2z
A. x2 - 3xy
= x (x - 3y)
B. (x + 5)2 - 9
= (x + 5) - 32
= (x + 5 + 3) (x + 5 - 3)
= ( x + 8) ( x + 2)
C. xy + xz - 2y - 2z
= (xy + xz) - (2y + 2z)
= x (y + z) - 2 (y + z)
= (x - 2) (y + z)