Những câu hỏi liên quan
PJ
Xem chi tiết
HD
30 tháng 4 2017 lúc 19:40

dốt thế 

Bình luận (1)
PJ
30 tháng 4 2017 lúc 19:46

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

Bình luận (0)
TD
30 tháng 4 2017 lúc 20:08

gọi A là tên biểu thức trên

Ta có :

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow A+3A=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\)( 2 )

\(\Rightarrow4A.3=12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)( 1 )

Cộng ( 1 ) và ( 2 ) ta được :

\(16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow A=\frac{3-\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}\)

\(\Rightarrow A=\frac{3}{16}-\frac{\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}< \frac{3}{16}\)

Bình luận (1)
CN
Xem chi tiết
TC
5 tháng 12 2017 lúc 5:32

A = 3+33+....+32010

đề bài đó hả

Bình luận (1)
HS
Xem chi tiết
DQ
26 tháng 10 2018 lúc 21:19

Bài 1:

          A=400x7x36+1620

*400x7x36 \(⋮\)2;3;5;9 

 1620         \(⋮\) 2;3;5;9

\(\Rightarrow\)400x7x36+1620\(⋮\) 2;3;5;9

Bài 2:

C=3+32+33+........+360

   =(3+32)+(33+34)+...........+(359+360)

   =3.(1+2) 

Bình luận (0)
H24
26 tháng 10 2018 lúc 21:23

Bài 2 : 

a, \(C=3+3^2+3^3...+3^{60}\)

\(\Rightarrow C=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{59}+3^{60}\right)\)

\(\Rightarrow C=1\left(1+3\right)+3^3\left(1+3\right)+..+3^{59}\left(1+3\right)\)

\(\Rightarrow C=4.\left(1+3^3+...+3^{59}\right)\)

\(\Rightarrow C⋮4\)

\(b,1+3+3^2+3^3+...+3^{60}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{60}+3^{61}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3..+3^{60}+3^{61}\right)-\left(1+3+3^2+...+3^{60}\right)\)

\(\Rightarrow2A=3^{61}-1\)

\(\Rightarrow A=\frac{3^{61}-1}{2}\)

Bình luận (0)
TT
Xem chi tiết
CM
8 tháng 8 2017 lúc 16:22

A=1+3+3^2+3^3+3^4+...+3^100

3A=3+3^2+3^3+3^4+...+3^101

3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)

2A=3^101-1

A=(3^101-1):2

phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé

Bình luận (0)
MT
Xem chi tiết
NM
8 tháng 12 2021 lúc 14:33

\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\\ A=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+...+3^{99}\right)=13\left(1+...+3^{99}\right)⋮13\)

Bình luận (0)
TV
Xem chi tiết
UN
Xem chi tiết
H24
15 tháng 11 2021 lúc 11:37

Bằng một cách thần kì, ta tính được A = \(\dfrac{3^{^{12}}-1}{2}\)

Ta sẽ chứng minh 312 - 1 ⋮ 10, như vậy thì (312 - 1) : 2 là một số nguyên chia hết cho 5

Thật vậy:

Ta có 32 = 9 \(\equiv\) -1 (mod 10)

=> (32)6 \(\equiv\) (-1)6 (mod 10)

=> 312 \(\equiv\) 1 (mod 10)

=> 312 - 1 \(\equiv\) 0 (mod 10)

Hay 312 - 1 chia hết cho 10

Vậy bài toán đã được chứng minh 

Bình luận (0)
LN
Xem chi tiết
KS
31 tháng 1 2022 lúc 9:30

undefined

Bình luận (0)
TH
31 tháng 1 2022 lúc 9:40

Đặt biểu thức trên là A

Chứng minh A\(⋮4\) 

Ta có :A=\(3+3^2+3^3+...+3^{59}+3^{60}\)

          A=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

         A=\(3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

         A=\(3.4+3^3.4+...+3^{59}.4\)

         A=\(4\left(3+3^3+...+3^{59}\right)\)

Vậy \(A⋮4\)

Chứng minh \(A⋮13\)

Ta có :A=\(3+3^2+3^3+...+3^{59}+3^{60}\)

           A=\(\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

           A=\(3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

           A=\(3.13+...+3^{58}.13\)

           A=\(13\left(3+...+3^{58}\right)\)

Vậy \(A⋮13\)

Bình luận (0)
NT
Xem chi tiết
XP
4 tháng 12 2017 lúc 20:37

S=3+32+33+....+360

2S=32+33+...+361

2S-S=(32+33+...+361-3+32+33+...+360)

S=361-3

Bình luận (0)
NH
4 tháng 12 2017 lúc 20:44

mk không chắc đâu nhé.

S=3+32+33+34+....+360

2.S=3+33+34+35+....+361

2.S-S=361-3

vậy S=3mũ 61-1

câu hỏi này mk làm lâu rùi nên hông nhớ rõ.Nếu sai đừng trách nhé

Bình luận (0)
NT
4 tháng 12 2017 lúc 20:47

cảm ơn bạn nha

Bình luận (0)