Những câu hỏi liên quan
DT
Xem chi tiết
AH
8 tháng 11 2019 lúc 14:13

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
AH
26 tháng 11 2019 lúc 12:11

Lời giải:

Ta có:
\(n^7+n^2+1=n^7-n+n+n^2+1=n(n^6-1)+n^2+n+1\)

\(=n(n^3-1)(n^3+1)+n^2+n+1\)

\(=n(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)[n(n-1)(n^3+1)+1]\)

\(=(n^2+n+1)(n^5-n^4+n^2-n+1)\)

Và:

\(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+(n^2+n+1)\)

\(=n^2(n^3-1)(n^3+1)+(n^2+n+1)=n^2(n-1)(n^2+n+1)(n^3+1)+(n^2+n+1)\)

\(=(n^2+n+1)(n^6-n^5+n^3-n^2+1)\)

Như vậy giữa $n^7+n^2+1$ và $n^8+n+1$ đều có ước chung là $n^2+n+1\neq \pm 1$ với mọi $n\neq 0;-1$ và nguyên nên phân số đã cho không tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
PH
Xem chi tiết
PL
26 tháng 11 2017 lúc 18:40

Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha

2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)

\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)

\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)

\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)

\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)

Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản

Bình luận (0)
NT
Xem chi tiết
KK
Xem chi tiết
PN
11 tháng 3 2017 lúc 20:29

Gọi UCLN(4m+8,2m+3) = d

\(\Rightarrow\) 4m+8 \(⋮\) d

2m+3 \(⋮\) d \(\Rightarrow\) 2(2m+3) \(⋮\) d \(\Rightarrow\) 4m+6 \(⋮\) d

\(\Rightarrow\)( 4m+8 ) - (4m+6 ) \(⋮\) d

hay 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) U(2)

Mà U(2)=\(\left\{-2;-1;1;2\right\}\)

\(\Rightarrow\) d \(\in\left\{-2;-1;1;2\right\}\)

Mà 2m+3 là dạng số lẻ \(\Rightarrow\) 2m+3 \(⋮̸\) 2 \(\Rightarrow\) d\(\ne\) -2 và 2

\(\Rightarrow\) d = 1 ; -1

Vậy \(\dfrac{4m+8}{2m+3}\) là p/s tối giản với mọi m ( ĐPCM )

Bình luận (0)
SK
11 tháng 3 2017 lúc 20:37

ta có:

gọi d là 1 ước chung của 4m+8 và 2m+3

vì 2m+3 chia hết cho d

=> 2.(2m+3) cũng chia hết cho d

=> 4m+6 chia hết cho d

=>4m+8-(4m+6) chia hết cho d

=>2 chia hết cho d

=> d\(\in\){-2;-1;1;2}

mà 2m+3 ko chia hết cho -2 hoặc 2

=> d chỉ có thể bằng 1hoặc -1

=>\(\dfrac{4m+8}{2m+3}\) là phân số tối giản

Bình luận (0)
TA
Xem chi tiết
TN
Xem chi tiết
TQ
Xem chi tiết
H24
28 tháng 2 2021 lúc 21:26

Giả sử `A=(n+1)/(n+2)` là số nguyên

`=>n+1 vdots n+2`

`=>n+2-1 vdots n+2`

`=>1 vdots n+2`

`=>n+2 in Ư(1)={1,-1}`

`=>n in {-1,-3}`

Mời bạn kiểm tra lại ạ phải thêm `n in N` hoặc `n ne {-1,-3}`

`=>` giả sử sai

`=>` A là phân số tối giản với `n in N`

Bình luận (0)
NK
Xem chi tiết
TN
16 tháng 3 2017 lúc 12:29

mình nhanh quá đến nỗi quên trả lời đây!

Bình luận (0)
NK
16 tháng 3 2017 lúc 12:30

trả lời  giùm mk đi

Bình luận (0)