Những câu hỏi liên quan
SK
Xem chi tiết
DL
Xem chi tiết
TP
29 tháng 8 2019 lúc 6:10

Áp dụng BĐT Bunhiacopxki :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow ay-bx=0\)

Ta có đpcm.

Bình luận (0)
TT
Xem chi tiết
QD
8 tháng 11 2019 lúc 22:22

1 ) \(â+b\ge2\sqrt{ab}\)

Tương tự : \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi a = b = c

2) Nhân 2 vế bpt vs abc

Cm như 1)

3) \(a+2\ge2\sqrt{2a}\)

\(b+8\ge2\sqrt{8b}\)

\(a+b\ge2\sqrt{ab}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)

nên k xảy ra đẳng thức

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TP
6 tháng 1 2019 lúc 15:16

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(1)

\(\left(ax+by\right)^2+\left(ay-bx\right)^2\)

\(=a^2x^2+2axby+b^2y^2+a^2y^2-2aybx+b^2x^2\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)(2)

Từ (1) và (2) ta có \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay-bx\right)^2\)( đpcm )

Bình luận (0)
NC
6 tháng 1 2019 lúc 15:38

\(\left(a^2+b^2\right)+\left(x^2+y^2\right)=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(\left(ax+by\right)^2+\left(ay-bx\right)^2=a^2x^2+2axby+b^2y^2+a^2y^2-2aybx+b^2x^2\)

\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

Suy ra : \(\left(a^2+b^2\right)+\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay+bx\right)^2\left(đpcm\right)\)

Bình luận (0)
NH
Xem chi tiết
MS
31 tháng 3 2018 lúc 3:55

Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh

Bình luận (2)
PH
Xem chi tiết
KT
22 tháng 2 2020 lúc 11:32

\(LHS\ge\left(\sqrt{ax}.\sqrt{\frac{a}{x}}+\sqrt{bx}.\sqrt{\frac{b}{x}}+\sqrt{cx}.\sqrt{\frac{c}{x}}\right)^2=\left(a+b+c\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
ND
26 tháng 2 2018 lúc 4:27

Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng

Nguyễn Huy Tú Lightning Farron Akai Haruma

Bình luận (0)
FH
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:57

undefined

Bình luận (0)
H24
Xem chi tiết
TT
9 tháng 2 2020 lúc 14:58

Bài này tao kiên trì trong nháp lắm rồi, nhưng trên này tao không kiên trì nữa đâu :))

Tóm lại bài này của mày quy đồng cả hai vế lên Kết hợp với điều giả sử \(a\ge b\ge c\)

Nên có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 2 2020 lúc 15:11

Nguyễn Văn Đạt không cần giả sử nha

Bình luận (0)
 Khách vãng lai đã xóa
TT
9 tháng 2 2020 lúc 15:13

tth_new Thế nào cũng đc nhưng tao kiệt sức vì bài mày rồi :))

Còn bài kia thì ta xin chịu ....

Bình luận (0)
 Khách vãng lai đã xóa