Những câu hỏi liên quan
BB
Xem chi tiết
NT
16 tháng 12 2020 lúc 20:33

Ta có: \(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Leftrightarrow3x-y+2x+y=10z\)

\(\Leftrightarrow5x=10z\)

hay x=2z

Thay x=2z vào biểu thức 3x-y=3z, ta được:

\(3\cdot2z-y=3z\)

\(\Leftrightarrow6z-y=3z\)

hay y=3z

Thay x=2z và y=3z vào biểu thức \(M=\dfrac{x^2-2xy}{x^2+y^2}\), ta được:

\(M=\dfrac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{13z^2}=\dfrac{-8z^2}{13z^2}=\dfrac{-8}{13}\)

Vậy: \(M=\dfrac{-8}{13}\)

Bình luận (0)
TG
16 tháng 12 2020 lúc 20:47

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)

Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)

 

Bình luận (0)
TG
16 tháng 12 2020 lúc 20:47

\(\left\{{}\begin{matrix}3x-y=3z\\2x+y=7z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=10z\\3x-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\3.2z-y=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=3.2z-3z=6z-3z=3z\end{matrix}\right.\)

Có: \(M=\dfrac{x^2-2xy}{x^2+y^2}=\dfrac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\dfrac{4z^2-12z^2}{4z^2+9z^2}=\dfrac{-8z^2}{13z^2}==-\dfrac{8}{13}\)

 

Bình luận (0)
DH
Xem chi tiết
DH
25 tháng 6 2018 lúc 9:40

\(3x-y=3z\Rightarrow-y=3z-3x\Rightarrow y=3x-3z\)

\(2x+y=7z\Rightarrow y=7z-2x\)\(\Rightarrow3x-3z=7z-2x=y\Rightarrow3x-3z-7z+2x=5x-10z=0\Rightarrow x-2z=0\Rightarrow x=2z\)

\(2x+y=7z\Rightarrow2\cdot2z+y=7z\Rightarrow4z+y=7z\Rightarrow y=3z\)

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{\left(2z\right)^2-2\cdot2z\cdot3z}{\left(2z\right)^2+\left(3z\right)^2}=\frac{4z^2-12z^2}{4z^2+9z^2}=-\frac{8z^2}{13z^2}=-\frac{8}{13}\)

Bình luận (0)
H24
Xem chi tiết
VC
24 tháng 6 2018 lúc 19:40

ta có 5x=10z=> x=2z=> y=3z

Tháy vào, ta có \(M=\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8z^2}{13z^2}=-\frac{8}{13}\)

Bình luận (0)
NA
28 tháng 6 2019 lúc 7:40

Ta có:

\(3x-y+2x+y=3z+7z\) 

\(5x=10z\) 

\(x=2z\) 

thay:\(4z+y=7z\) \(\Rightarrow y=3z\) 

Thay vào M ta đc:M=\(\frac{4z^2-12z^2}{4z^2+9z^2}\) =\(\frac{-8z^2}{13z^2}=\frac{-8}{13}\) 

vậy\(M=\frac{-8}{13}\) nếu\(3x-y=3z;2x+y=7z\) 

Bình luận (0)
NN
Xem chi tiết
AN
23 tháng 11 2016 lúc 23:43

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

Bình luận (0)
AN
23 tháng 11 2016 lúc 23:46

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

Bình luận (0)
ND
12 tháng 12 2017 lúc 21:17

\(_{\hept{\begin{cases}3x-y=3z\left(1\right)\\\\2x+y=7z\end{cases}\Rightarrow}\left(3x-y\right)+\left(2x+y\right)=10z}\)

\(\Leftrightarrow\)5x=10z\(\Leftrightarrow x=2z\)

thay x=2z vào (1) ta được :6z+y=3z\(\Rightarrow y=6z-3z=3z\)

thay y=3z,x=2z vào biểu thức M=\(\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8}{13}\)

Bình luận (0)
DA
Xem chi tiết
Vi
Xem chi tiết
AH
29 tháng 12 2022 lúc 18:37

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 2 2017 lúc 18:13

Từ 3x – y = 3z và 2x + y = 7z ⇒ x = 2z; y = 3z. Thay vào M ta được

Tìm giá trị của phân thức khi biến thỏa mãn điều kiện cho trước | Toán lớp 8

Bình luận (0)
TV
Xem chi tiết
H24
11 tháng 3 2022 lúc 20:59

A = 3x^3 +6x^2 + 3xy^3

x= 1 phần 2 ;  p = -1 phần 3

A=3.1 phần 2^3 . -1 phần 3     + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3

=-1 phần 8      + -1 phần 2 - 1 phần 2

= -1 phần 4

Bình luận (0)
HT
Xem chi tiết