CHO A=1+2+22+......290
CMR A⋮7
Bài 6 đề 1
Cho : A = 21 + 22 + 23 + 24 + 25 + ... + 290
a) Chứng tỏ A chia hết cho 7
b) Tính A
Số số hạng của A:
90 - 1 + 1 = 90 (số)
Do 90 chia hết cho 3 nên có thể nhóm thành nhóm 3 số hạng
Ta có:
A = 2¹ + 2² + 2³ + ... + 2⁹⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁸⁸ + 2⁸⁹ + 2⁹⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁸⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁸⁸.7
= 7.(2 + 2⁴ + ... + 2⁸⁸) ⋮ 7
Vậy A ⋮ 7
b) A = 2¹ + 2² + 2³ + ... + 2⁹⁰
⇒ 2A = 2² + 2³ + 2⁴ + ... + 2⁹¹
⇒ A = 2A - A = (2² + 2³ + 2⁴ + ... + 2⁹¹) - (2 + 2² + 2³ + ... + 2⁹⁰)
= 2⁹¹ - 2
A = 21+ 22+ 23+ 24+ 25+ …+ 290
Chứng tỏ A chia hết cho 7
Số số hạng:
(290-21):1+1=270( số hạng)
Tổng A:(290+21) x 270:2=41985
Ta có:41986:7 hết nén A chia hết cho 7.
Cho ba số A=44...4 (2n chữ số 4) ; B=22...2 (n+1 chữ số 2) ; C=88...8 (n chữ số 8). CMR: A+B+C+7 là một số chính phương.
\(A=444......4\) (\(2n\) chữ số 4) \(=4.1111.....111\) (\(2n\) chữ số 1) \(=4.\dfrac{10^{2n}-1}{9}\)
\(B=222.....22\) (\(n+1\) chữ số 2) \(=2.111....11\) (\(n+1\) chữ số 1) \(=2.\dfrac{10^{n+1}-1}{9}\)
\(C=888....888\) (\(n\) chữ số 8) \(=8.111....1111\) (\(n\) chữ số 1) \(=8.\dfrac{10^n-1}{9}\)
\(\Leftrightarrow A+B+C+7=\dfrac{4,10^{2n}+2.10^{n+1}+8.10^n-14}{9}\)
Cho A = 1/22 + 1/32 + 1/42 + ... + 1/92.
CMR: 2/5 < A < 8/9.
Giải:
A=1/22+1/32+1/42+...+1/92
Ta có:
1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
...
1/92<1/8.9
⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
A<1/1-1/9
A<8/9
Ta có:
1/22>1/2.3
1/32>1/3.4
1/42>1/4.5
...
1/92>1/9.10
⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10
A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A>1/2-1/10
A>2/5
Vậy 2/5<A<8/9 (đpcm)
Chúc bạn học tốt!
Bài 1 : CMR : 22...2(n chữ số 2) + 7n chia hết cho 9
Bài 2 : CMR với mọi số tự nhiên ta có:
a) (n.n + 2 ). (n + 7 )
b) 5n -1 chia hết cho 4
c) n^2 + n + 2 không chia hết cho 5
cho tổng A=1+2+22+23+...+299
a) Rút gọn A b) CMR: A chia hết cho 3 và 5 |
c) CMR: A không chia hết cho 7
d) Tìm chữ số tận cùng của A
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
1,Cho A=1/21+1/22+1/23+...+1/40
CMR: 1/2<A<1
a, Số lượng số hạng của A là: (40-21):1+1=20 số (1)
\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
\(=>A>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(20 số hạng)
\(A>\frac{1}{40}\cdot20=\frac{20}{40}=\frac{1}{2}\)
Vậy A> \(\frac{1}{2}\)
b, Từ (1) => \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)
=> \(A< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 20 số hạng)
=> A< \(\frac{1}{20}\cdot20=1\)
Vậy A< 1
cmr
a, 1/2<1/51+1/52+....+1/100<1
b 7/12<1/21+1/22+....+1/40<1/10
b, đặt cái 1/21 + 1/22 +1/23+....+1/40 là A nhé và A có 20 hạng tử
Ta có 1/21 + 1/22 +1/ 23+......+1/30>1/30 +1/30 +....+1/30 =10/30 =1/3(*)
lại có 1/31 + 1/32+.....+1/40>1/40 + 1/40 + 1/40.....=10/40=1/4(**)
từ (*) và (**) => A> 1/3 +1/4
A>7/12
từng đó thì phải. Còn < 1/10 thì sai đề vì 7/12 > 1/10 mà. Mình chỉ cm đc < 5/6 thôi
a, ta có 1/51 + 1/52 + 1/53 + 1/54.....+1/100 > 1/100 + 1/100 + 1/100+......+1/100
=> 1/51 +1/52 +......+1/100 > 50/100 =1/2 ( vì có 50 hạng tử)
tương tự 1/51 + 1/52 +1/53 ..........+1/100 < 1/51 + 1/51 + 1/51 +1/51......
=> 1/51 + 1/52 + 1/53....+1/100 < 50/51 <1
nên ta suy ra điều phải cm
Cho A=\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{80},CMR:1< A< 2\)
Ta có
\(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{60}+...+\frac{1}{80}\right)\) \(A>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}\right)\)
\(A>\frac{20}{40}+\frac{20}{60}+\frac{20}{80}\Rightarrow A>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{13}{12}\Rightarrow A>1\) (1)
LẠi có \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{60}+...+\frac{1}{80}\right)\)
\(A< \left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(A< \frac{20}{20}+\frac{20}{40}+\frac{20}{60}\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\Rightarrow A< \frac{11}{6}< \frac{12}{6}\Rightarrow A< 2\) (2)
Từ (1) và (2) suy ra điều phải CM
Cho A = 2 + 22 + 23 +.....+220
CMR A ⋮ 3 A ⋮ 15
Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{19}+2^{20})$
$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$
$=(2+2^3+...+2^{19})(1+2)=(2+2^3+...+2^{19}).3\vdots 3(1)$
---------------------
Lại có:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{17}+2^{18}+2^{19}+2^{20})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{17})$
$=15(2+2^5+...+2^{17})\vdots 15(2)$
Từ $(1); (2)$ ta có đpcm.
Ta có:
A=2+22+23+...+220
A=(2+22)+(23+24)...+(219+220)
A=2.(1+2)+23.(1+2)...+219.(1+2)
A=2.3+23.3...+219.3
A=3.(2+23+...+219)
vậy a chia hết cho 3 vì a=3k với k là số tự nhiên
Ta có:
A=2+22+23+...+220
A=(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220)
A=2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23)
A=2.(1+2+4+8)+25.(1+2+4+8)+...+217.(1+2+4+8)
A=2.15+25.15+...+217.15
A=(15.2.+25.+...+217)
vậy a chia hết cho 15 vì a=15k với k là số tự nhiên