phân tích đa thức thành nhân tử
(\(x^2-x+6\))+\(\left(x-3\right)^2\)
Phân tích đa thức thành nhân tử
\(x^2\left(x^2-6\right)-x^2+9\)
x2(x2-6)-x2+9
<=>(x4-6x2+9)-x2
<=>(x2-3)2-x2
<=>(x2-3-x)(x2-3+x)
Phân tích đa thức thành nhân tử
\(\left(x+3\right)\left(x-6\right)+x^2-9\)
Phân tích đa thức thành nhân tử
(x+3)(x−6)+x2−9
Tk nha !
\(\left(x+3\right)\left(x-6\right)+x^2-9\)
\(=x^2-3x-18+x^2-9\)
\(=2x^2-3x-27\)
\(=\left(2x^2+6x\right)-\left(9x+27\right)\)
\(=\left(x+3\right)\left(2x-9\right)\)
Phân tích đa thức thành nhân tử
\(x^2+27+\left(x+3\right)\left(x-9\right)\)
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
phân tích đa thức thành nhân tử
a , \(\left(x-3\right)^2-\left(4x+5\right)^2-9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
Rút gọn thôi chứ phân tích sao được ._.
( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )
= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )
= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18
= -30x2 - 52x - 7
Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))
Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)
\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)
\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)
\(=\left(4x+7\right)\left(12x+17\right)\)
PHÂN tích đa thức thành nhân tử
(\(\left(x^3+3x+1\right)\left(x^3+3x+2\right)-6\)
Ta có : (x3 + 3x + 1)(x3 + 3x + 2) - 6
= (x3 + 3x + 1,5 - 0,5)(x3 + 3x + 1,5 + 0,5) - 6
= (x3 + 3x + 1,5)2 - 0,52 - 6
= (x3 + 3x + 1,5)2 - 6,25
= (x3 + 3x + 1,5 - 2,5) (x3 + 3x + 1,5 + 2,5)
= (x3 + 3x - 1) (x3 + 3x + 3)
Phân tích đa thức thành nhân tử:
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
`(x+3)^4+(x+5)^4-2`
`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`
`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`
`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`
`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`
`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`
`=(x+4)(2x^3+24x^2+108x+176)`
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left[\left(x+3\right)^4-1\right]+\left[\left(x+5\right)^4-1\right]\)
\(=\left[\left(x^2+6x+9-1\right)\left(x^2+6x+9+1\right)\right]+\left[\left(x^2+10x+25-1\right)\left(x^2+10x+25+1\right)\right]\)
\(=\left(x^2+6x+8\right)\left(x^2+6x+10\right)+\left(x^2+10x+24\right)\left(x^2+10x+26\right)\)
\(=\left(x+2\right)\left(x+4\right)\left(x^2+6x+10\right)+\left(x+4\right)\left(x+6\right)\left(x^2+10x+26\right)\)
\(=\left(x+4\right)\left[\left(x+2\right)\left(x^2+6x+10\right)+\left(x+6\right)\left(x^2+10x+26\right)\right]\)
\(=\left(x+4\right)\left(x^3+6x^2+10x+2x^2+12x+20+x^3+10x^2+26x+6x^2+60x+156\right)\)
\(=\left(x+4\right)\left(2x^3+24x^2+108x+176\right)\)
\(=2\left(x+4\right)\left(x^3+12x^2+54x+88\right)\)
Phân tích đa thức thành nhân tử:
\(x^3-8+2x\left(x-2\right)\)
\(x^3-8+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4+2x\right)=\left(x-2\right)\left(x^2+4x+4\right)\\ =\left(x-2\right)\left(x+2\right)^2\)
=\(\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
=\(\left(x-2\right)\left(x^2+4x+4\right)\)
=\(\left(x-2\right)\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)
\(=\left(x^2+10x+16+4\right)^2\)
\(=\left(x^2+10+20\right)^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right)
\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
phân tích đa thức thành nhân tử:
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)
\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)
\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1)
Đặt \(x^2-10x+20=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-16+16\)
\(=t^2\)Thay \(t=x^2-10x+20\)ta được :
\(\left(x^2-10x+20\right)^2\)
\(=\left(x^2-2.5.x+25-25+20\right)^2\)
\(=\left[\left(x-5\right)^2-5\right]^2\)
\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)
Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)
\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)
Chúc bạn học tốt.
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)
\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)
\(\Rightarrow\left(x^2+10x+20\right)^2\)