Những câu hỏi liên quan
RM
Xem chi tiết
PA
Xem chi tiết
PA
18 tháng 10 2021 lúc 6:07

giúp mik

Bình luận (0)
NM
18 tháng 10 2021 lúc 7:22

mình thấy bài bạn có đáp án hết rồi mà?

Bình luận (1)
PA
18 tháng 10 2021 lúc 7:27

mik nhaamf tí nha

Bình luận (0)
DY
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 3 2018 lúc 19:00

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

Bình luận (0)
DY
Xem chi tiết
NV
Xem chi tiết
HB
11 tháng 3 2015 lúc 20:59

nói chung là: đặt tổng đó là E

suy ra:

2E=1/1.2-1/99.100

=> E=(1/1.2-1/99.100):2=(1/1.2-1/99.100).1/2

vậy k=2

 

Bình luận (0)
HB
11 tháng 3 2015 lúc 20:55

2 đúng rùi

còn cách giải dài lắm

mk lười ghi

Bình luận (0)
NN
Xem chi tiết
H24
16 tháng 2 2021 lúc 19:11

https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 3 2020 lúc 21:29

Bài 1:

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

\(=n.\left(n+1\right).\left(n+2\right)\)

\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 3 2020 lúc 21:28

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>A=[n.(n+1).(n+2)] /3

Bình luận (0)
 Khách vãng lai đã xóa
TH
2 tháng 3 2020 lúc 21:29

A = 1.2 + 2.3 + 3.4 + ... + n(n + 1)

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1)[(n+2)-(n-1)] 

3A = 1.2.3 +2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + (n-1)n(n+1) + n(n+1)(n+2)

3A = n(n+1)(n+2)

A = n(n+1)(n+2)

bài 2 làm tương tự nhưng là 4B nha cậu

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết