Những câu hỏi liên quan
TM
Xem chi tiết
PH
Xem chi tiết
YN
20 tháng 4 2021 lúc 18:29

\(B\left(1-x\right)\left(3x+4\right)\)

\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)

\((BTD\)\(AM-GM)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)

\(\rightarrow B\text{⩽ }\frac{49}{12}\)

Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)

Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
ZN
20 tháng 4 2021 lúc 19:21

\(B=\left(1-x\right).\left(3x+4\right)\)

Ta có :

\(B=3x+4-3x^2-4x\)

\(B=-3x^2-x+4\)

\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)

\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)

\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)

Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)

\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)

\(\Rightarrow B\le\frac{49}{12}\)

\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
CD
Xem chi tiết
CD
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
H24
22 tháng 10 2019 lúc 19:54

toi ko bt

Bình luận (0)
 Khách vãng lai đã xóa
GL
22 tháng 10 2019 lúc 19:58

A= -4 - x^2 +6x

  =-(x2-6x+9)+5

=-(x-3)2+5\(\le\)5

Dấu "=" xảy ra khi x=3

Vậy...............

B= 3x^2 -5x +7

\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)

\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)

Dấu "=" xảy ra khi \(x=\frac{5}{6}\)

Vậy.................

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
NT
8 tháng 6 2017 lúc 20:11

Đặt \(A=-3x^2+2x-1\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\)

Ta có: \(-3\left(x-\dfrac{1}{3}\right)^2\le0\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le\dfrac{-2}{3}\)

Dấu " = " xảy ra khi \(-3\left(x-\dfrac{1}{3}\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MAX_A=\dfrac{-2}{3}\) khi \(x=\dfrac{1}{3}\)

Bình luận (0)
TD
8 tháng 6 2017 lúc 20:04

Gtnn và gtln là j vậy ?

Bình luận (2)
YE
Xem chi tiết
H24
13 tháng 7 2017 lúc 19:40

Ta có : A = x2 - x + 2

=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

Bình luận (0)
NL
13 tháng 7 2017 lúc 19:47

A = x2 - x + 2 = x2 - 2.x.1 + 1+ 1 = ( x+1)2 + 1

Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)

 => ( x+1)2 + 1 \(\ge\)1  khi với mọi x)

Dấu "=" xảy ra khi ( x+1)2 = 0

 => x + 1 = 0 -> x= -1

Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1

Bình luận (0)
H24
5 tháng 6 2019 lúc 12:06

A= xx2 -x +2

2= 8/4

=> x2 -2 . 1/2 x + (1/2)2 + 7/4

=> (x - 1/2)2 + 7/4

Không tin thì thử khai triển ra nhé!

Bình luận (0)
LN
Xem chi tiết
NT
20 tháng 8 2021 lúc 20:54

\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)

\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)

Dấu ''='' xảy ra khi x = 3/4 

Vậy GTNN của A bằng 7/8 tại x = 3/4 

Bình luận (0)
 Khách vãng lai đã xóa