a=x^2(x+y)+y^2(x+y)+2x^2y+2xy^2
Rút gọn A= {2xy/x^2-y^2 + x-y/2x+2y } : x+y/2x + y/y-x g
\(A=\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}+\dfrac{y}{y-x}\left(ĐKXĐ:x\ne\pm y\right)\)
\(A=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}\right):\dfrac{x+y}{2x}+\dfrac{y}{y-x}\)
\(=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}+\dfrac{y}{y-x}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}+\dfrac{y}{y-x}\)
\(\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}+\dfrac{y}{y-x}=\dfrac{x}{x-y}+\dfrac{y}{y-x}=\dfrac{x}{x-y}-\dfrac{y}{x-y}=\dfrac{x-y}{x-y}=1\)
Tìm x, y thuộc Z để:
a) xy + x - y = 2
b) x - 2xy + y = 0
c) x. (x - 2) - (2 - x)y - 2. (x - 2) = 3
d) (2x - y). (4x2 + 2xy + y2) + (2x + y). (4x2 - 2xy + y2) - 16x. (x2 - y) = 32
e) x2 - 2xy + 2y2 - 2x + 6y +5 = 0
g) x2 + 2xy + 7x + 7y + 2y2 = 0
a xy -2x -y^2 +2y
b x^2 - 2xy +y^2 -x +y
c x^2 -1 -2xy +2y
d (x+3)^2 -(2x -5)(x+3)
a: =(xy-2x)-(y^2-2y)
=x(y-2)-y(y-2)
=(x-y)(y-2)
b: =(x^2-2xy+y^2)-(x-y)
=(x-y)^2-(x-y)
=(x-y)(x-y-1)
c: =(x^2-1)-(2xy-2y)
=(x-1)(x+1)-2y(x-1)
=(x-1)(x+1-2y)
d: =(x+3)(x+3-2x+5)
=(x+3)(8-x)
\(a,xy-2x-y^2+2y\)
\(=x\left(y-2\right)-y\left(y-2\right)\)
\(=\left(x-y\right)\left(y-2\right)\)
\(b,x^2-2xy+y^2-x+y\)
\(=\left(x-y\right)^2-\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-1\right)\)
\(c,x^2-1-2xy+2y\)
\(=\left(x-1\right)\left(x+1\right)-2y\left(x-1\right)\)
\(=\left(x-1\right)\left(x+1-2y\right)\)
\(d,\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left(x+3-2x+5\right)\)
\(=\left(x+3\right)\left(-x+8\right)\)
#Urushi
a, x^2 +2xy^2+y^3/ 2x^2 +xy -y^2=xy+x^2/2x-y
b, x^2 + 3xy +2y^2 /x^3 +2x^2y-xy^2 -2y^3= 1/2x-7
Tìm x,y biết:
a,2x^2+y^2+2xy+10x+25=0
b,x^2+3y^2+2xy-2y+1=0
c,x^2+2y^2+2xy-2x+2=0
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
a) 2x2 + y2 + 2xy + 10x + 25 = 0
=> (x2 + 2xy + y2) + (x2 + 10x + 25) = 0
=> (x + y)2 + (x + 5)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x\\x=-5\end{cases}}\) <=> \(\hept{\begin{cases}y=5\\x=-5\end{cases}}\)
b)c) xem lại đề
a x^2y -x^3 -9y +9x
b x^2 -2xy +y^2 -4
c x^2 +4x -y^2 +4
d x ^2 -y^2 -2x -2y
a: =(x^2y-x^3)-(9y-9x)
=x^2(y-x)-9(y-x)
=(y-x)(x^2-9)
=(y-x)(x-3)(x+3)
b: \(=\left(x^2-2xy+y^2\right)-4\)
=(x-y)^2-4
=(x-y-2)(x-y+2)
c: \(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
=(x+2+y)(x+2-y)
d: =(x^2-y^2)-(2x+2y)
=(x-y)(x+y)-2(x+y)
=(x+y)(x-y-2)
\(a,x^2y-x^3-9y+9x\)
\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-9\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
\(b,x^2-2xy+y^2-4\)
\(=\left(x^2-2xy+y^2\right)-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)
\(c,x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
\(=\left(x-y+2\right)\left(x+y+2\right)\)
\(d,x^2-y^2-2x-2y\)
\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
#Urushi
M)(x^2-2xy+y^2)(x-y) N)-(x-y)(x^2+xy-1) Ờ)-(x^2-2y)(x+y^2-1) P)(1/2x-1)(2x-3) Q)(x-1/2y)(x-1/2y) R)(x^2-2x+3)(1/2x-5)
m: (x-y)(x^2-2xy+y^2)
=(x-y)*(x-y)^2
=(x-y)^3
=x^3-3x^2y+3xy^2-y^3
n: =-(x^3+x^2y-x-x^2y-xy^2+y)
=-x^3+x+xy^2-y
o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)
=-x^3-x^2y^2+x^2+2xy+2y^3-2y
p: (1/2x-1)(2x-3)
=1/2x*2x-1/2x*3-2x+3
=x^2-3/2x-2x+3
=x^2-7/2x+3
q: (x-1/2y)(x-1/2y)
=(x-1/2y)^2
=x^2-xy+1/4y^2
r: (x^2-2x+3)(1/2x-5)
=1/2x^3-5x^2-x^2+10x+3/2x-15
=1/2x^3-6x^2+11,5x-15
bai1: rut gon cac bieu thuc sau
a, (2x-y).(4x^2+2xy+y^2)-(2x+y).(4x^2-2xy+y^2)
b, (3x+2y).(9x^2-6xy+4y^2)-27x^3
c,8x.(x-2y).(x+2y)+(y-2x).(x^2+2xy+4x^2)
bai2 :cmr
a, a^3+b^3=(a+b)^3-3ab.(a+b)
b.a^3-b^3=(a-b)+3ab,(a-b)
bai2 :cmr
a, a^3+b^3=(a+b)^3-3ab.(a+b)
VP= \(\left(a+b\right)^3-3ab\left(a+b\right)\)
=\(a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)
=VT
b.a^3-b^3=(a-b)^3+3ab,(a-b)
\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)
=\(a^3-3a^2b+ab^2.3-b^3+3a^2b-3ab^2=a^3-b^3\)
=VT
=> ĐPCM
bài 1.
a) = 8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3-(8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3)
= 8x3+4x2y+2xy2-4x2y-2xy2-y3 - 8x3+4x2y-2xy2-4x2y+2xy2-y3
=-8x2y-6y3
b) = 27x3-18x2y+12xy2+18x2y-12xy2+8y3-27x3
=8y