Tìm GTNN của biểu thức sau :
\(A=3\left|1-2x\right|-5\)
1) Tìm GTNN của biểu thức: \(A=\left|y-5\right|+\left|y+2012\right|\)
2) Tìm GTLN của biểu thức: \(N=-5-\left|2x-3\right|\)
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
Tìm GTNN của biểu thức: \(A=\left|2x-1\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)
a) Tìm GTNN của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b)Tìm GTLN của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
Tìm giá trị của m để biểu thức sau đạt GTNN. Tìm GTNN đó:
\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2\)
Ta có \(\left(2x+y+1\right)^2\ge0;\left(4x+my+5\right)^2\ge0\Rightarrow G\ge0\)
Xét hệ \(\hept{\begin{cases}2x+y+1=0\\4x+my+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y+2=0\\4x+my+5=0\end{cases}\Rightarrow}\left(m-2\right)y+3=0}\)
Nếu \(m\ne2\)thì \(m-2\ne0\Rightarrow\hept{\begin{cases}y=\frac{3}{2-m}\\x=\frac{m-5}{4-2m}\end{cases}}\)
\(\Rightarrow Min_G=0\)
Nếu m=2 thì
\(G=\left(2x+y+1\right)^2+\left(4x+my+5\right)^2=\left(2x+y+1\right)^2+\left[2\cdot\left(2x+y+1\right)+3\right]^2\)
Đặt 2x+y+1=z thì
\(G=5z^2+12z+9=5\left[\left(z+\frac{6}{5}\right)^2+\frac{9}{25}\right]=5\left(x+\frac{6}{5}\right)+\frac{9}{5}\ge\frac{9}{5}\)
\(Min_G=\frac{9}{5}\Leftrightarrow2x+y+1=\frac{-6}{5}\)hay \(y=\frac{-11}{5}-2x,x\inℝ\)
Tìm GTNN của biểu thức sau :
\(A=\left(2x+\frac{1}{3}\right)^4-1\)
4 là số chẵn nên \(\left[2x+\frac{1}{3}\right]^4\ge0\)
=> A ≥ -1
=> GTNN của A = -1 khi x = -1/6
4 là số chẵn nên 2x +
3
1
4
≥ 0
=> A ≥ -1
=> GTNN của A = -1 khi x = -1/6
chúc bn hok tốt @_@
Để A đạt GTNN <=> (2x+1/3)^4 đạt gtnn
(2x+1/3)^4 đạt gtnn <=> (2x+1/3)^4=0
<=> 2x+1/3=0
<=>2x=-1/3
<=> x=-1/6
Vậy x=-1/6
chúc bạn học giỏi nhé
Tìm a) GTNN của biểu thức B=|2x+6|+2+2x
b) GTLN của biểu thức C=\(\frac{4-\left|x-y+1\right|}{5+\left|x+y+1\right|}\)
a. tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b. tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
b)B có GTLN <=> (2x-3)2+5 có GTNN
Vì (2x-3)2 > 0 với mọi x
=>(2x-3)2+5 > 5 với mọi x
=>GTNN của (2x-3)2+5 là 5
=>D = \(\frac{4}{\left(2x-3\right)^2+5}\) < \(\frac{4}{5}\)
=>GTLN của D là 4/5
Dấu "=" xảy ra <=> (2x-3)2=0<=>x=3/2
Vậy..............
1)Tìm GTNN của biểu thức :
\(A=\left(2x+\frac{1}{3}\right)^4-10\)
B=/2x-2/3/+(y+1/4)^4-1
b) Tìm GTLN của biểu thức sau:
\(C=-\left(\frac{3}{7}x-\frac{4}{15}\right)^6+3\)
D=-/x-3/-/2y+1/+15
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
173. a) Tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b) Tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)