\(cmr:\left(10^n-1\right)\)chia hết cho 3
CMR : Với n thuộc N sao
a) A=\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)
CMR : A chia hết cho 10
b) B=\(\left(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\right)\)
CMR : B chia hết cho 6
1. Giải phương trình: \(\left(x-3\right)^3+\left(x+2\right)^3=\left(2x-1\right)^3\)
2. CMR: \(2009^{2008}+2011^{2010}\) chia hết cho 2010
3.CMR: \(n^3+2012n\) chia hết cho 48 với mọi n chẵn
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
1) Đặt: \(\left\{{}\begin{matrix}x-3=a\\x+2=b\end{matrix}\right.\) ta có: \(pt\Leftrightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)
\(\Rightarrow3a^2b+3ab^2=0\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3ab=0\Leftrightarrow ab=0\\a+b=0\end{matrix}\right.\)
Khi \(ab=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Khi \(a+b=0\Leftrightarrow x-3+x+2=0\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy pt có nghiệm \(S=\left\{3;-2;\dfrac{1}{2}\right\}\)
Bài 1:
Đặt \(\left\{\begin{matrix} x-3=a\\ x+2=b\end{matrix}\right.\). PT trở thành:
\(a^3+b^3=(a+b)^3\)
\(\Leftrightarrow (a+b)(a^2-ab+b^2)=(a+b)^3\)
\(\Leftrightarrow (a+b)[(a+b)^2-(a^2-ab+b^2)]=0\)
\(\Leftrightarrow 3ab(a+b)=0\)
\(\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x-3=0\\ x+2=0\\ 2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=3\\ x=-2\\ x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
Gọi \(\text{BS2010}\) là bội số của $2010$
Ta có: \(2009^{2008}+2011^{2010}=(2010-1)^{2008}+(2010+1)^{2010}\)
Vì $2008$ chẵn nên: \((2010-1)^{2008}=\text{BS2010}+1\)
\((2010+1)^{2010}=\text{BS2010}+1\)
Do đó:
\(2009^{2008}+2011^{2010}=\text{BS2010}+1+\text{BS2010}+1=\text{BS2010}+2\)
Tức là \(2009^{2008}+2011^{2010}\) không chia hết 2010 (chia 2010 dư 2)
Đề bài sai.
Nếu bạn thay $2008$ thành số lẻ thì bài toán sẽ đúng
CMR: với mọi số tự nhiên n thì:
a)\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
a)
= n3 + 2n2 + 3n2 + 6n - n - 2 + 2
= 5n2 + 5n
= 5(n2 + n ) chia hết cho 5
b)
= 2(12n +5) chia hết cho 2
CMR
\(1.\left(n+3\right)\)chia hết cho \(N\)
\(2.\left(n+8\right)\)chia hết cho \(\left(n+3\right)\)
\(3.\left(18-2n\right)\)chia hết cho \(\left(n+3\right)\)
giải chi tiết cho mình nha
\(cmr:\left(10^n+5\right)\)chia hết cho 3
Ta có :
10n = 100...0 (n chữ số 0)
=> 10n + 5 = 100...0 (n chữ số 0) + 5 = 100..05 (n - 1 chữ số 0)
Tổng các chữ số của số này là :
1 + 0 + 0 + ... + 0 + 5 (n - 1 chữ số 0) = 1 + 0 + 5 = 6 chia hết cho 3
Vậy 10n + 5 chia hết cho 3
Bạn Trương Hồng Hạnh đúng rồi, Huỳnh Phan Yến Như tick cho bạn đó đi !
\(cmr:\left(10^n-1\right)\)chia hết cho 9
\(10^n-1=10...000\left(\text{n chữ số 0}\right)-1=99...999\left(\text{n-1 chữ số 9}\right)\)
Tổng các chữ số của 99...999 (n-1 chữ số 9) = 9+9+...+9+9+9 (n-1 số 9) chia hết cho 9
=> 99...999 chia hết cho 9
n-1 số 9
Vậy 10n-1 chia hết cho 9(đpcm).
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)
\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)
\(=n^2+6n+9-n^2+2n-1\)
\(=8n+8\)
\(=8\left(n+1\right)\)
có \(8\left(n+1\right)⋮8\)
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=24n\)
có \(24n⋮24\)
\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)
cmr
A=\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9 với mọi n là só nguyên
áp dụng hằng đẳng thức \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc\)
=> A= (n+n+1+n+2)[n2 +(n+1)2 +(n+2)2 -n(n+1)-n(n+2)- (n+1)(n+2)] +3n(n+1)(n+2)
= (3n+3).3 +3n(n+1)(n+2) = 9n(n+1) + 3n(n+1)(n+2)
n(n+1)(n+2) là 3 số nguyên liên tiếp nên luôn tồn tại một số chia hết cho 3 => 3n(n+1)(n+2) chia hết cho 9
9n(n+10 chia hết cho 9
=> A chia hết cho 9
Xét hằng đẳng thức sau đây: x3 + y3 + z3 - 3xyz
<=> ( x + y )3 - 3xy( x + y ) + z3 - 3xyz
<=> [ ( x + y )3 + z3 ] - 3x2y - 3xy2 - 3xyz
<=> ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + 2xy + y2 - zx - zy + z2 ) - 3xy ( x + y + z )
<=> ( x + y + z )( x2 + y2 - xy - zx - zy + z2 )
<=> x3 + y3 + z3 = ( x + y + z )( x2 + y2 - xy - zx - zy + z2 ) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
( n + n+ 1 + n + 2 )[ n2 + (n + 1 )2 - n( n+ 1 ) - (n+2)n - ( n + 1 )( n +2 ) + (n+2)2 ] + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )( n2 + n2 + 2n + 1 - n2 - n - n2 - 2n - n2 - 2n - n - 2 + n2 + 4n +4 ) + 3n( n + 1 )( n + 2 )
<=> ( 3n + 3 )3 + 3n( n + 1 )( n + 2 )
<=> 9( n + 1 ) + 3n( n + 1 )( n + 2 )
Vì n( n + 1 )( n + 2 ) là 3 chữ số liên tiếp chia hết cho 6
=> 3n( n + 1 )( n + 2 ) = 3.6 = 18 chia hết cho 9
=> 9( n + 1 ) + 3n( n + 1 )( n + 2 ) chia hết cho 9
=> n3 + ( n + 1 )3 + ( n + 2 )3 chia hết cho 9 ( đpcm )
Khi n=1 ta có \(u_1=1^3+\left(1+1\right)^3+\left(1+2\right)^3=1+8+27=36⋮9\)(đúng)
Giả sử mệnh đề đúng khi n=k (k >=1) tức là \(u_k=k^3+\left(k+1\right)^3+\left(k+2\right)^2⋮9\)
Bây giờ ta sẽ chứng minh mệnh đề cũng đúng khi n=k+1, tức là ta phải chứng minh \(u_{k+1}=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3⋮9\)
Ta có \(u_{k+1}=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3=\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+27\)
\(=\left[\left(k+1\right)^3+\left(k+2\right)^3+k^3\right]+9\left(k^2+3k+3\right)=u_k+9\left(k^2+3k+3\right)⋮9\)
=> mệnh đề đúng với n=k+1
Vậy theo phương pháp quy nạp toán học \(u_n=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)chia hết cho 9 với mọi n là số nguyên