Những câu hỏi liên quan
H24
Xem chi tiết
AH
13 tháng 11 2023 lúc 17:55

Với điều kiện đã cho thì không tìm được $x,y,z$ cụ thể bạn nhé.

Bình luận (0)
ZZ
Xem chi tiết
H24
30 tháng 10 2017 lúc 20:01

x2−6x+y2+10y+34=−(4z−1)2
x^2-6x+9+y^2+10y+25+(4z-1)^2=0x2−6x+9+y2+10y+25+(4z−1)2=0
(x-3)^2+(y+5)^2+(4z-1)^2=0(x−3)2+(y+5)2+(4z−1)2=0
{nghiempt}x-3=0\\y+5=0\\4z-1=0
{nghiempt}x=3\\y=-5\\z={1}{4}

Bình luận (0)
LS
Xem chi tiết
TN
8 tháng 10 2017 lúc 7:56

x2-6x+y2+10y+34=-(4z-1)2

=>x2-6x+9+y2+10y+25+(4z-1)2=0=B

=>(x-3)2+(y+5)2+(4z-1)2=0

với mọi x,y,z ta có :

(x-3)2>=0

(y+5)2>=0

(4z-1)2>=0

=>(x-3)2+(y+5)2+(4z-1)2>=0

hay B>=0

dấu bằng xảy ra khi (x-3)2=0 => x-3=0  =>x=3

=>(y+5)2=0 =>y+5=0  =>y=-5

=>(4z-1)2=0 =>4z-1=0  => z=1/4

Vậy y=-5

Bình luận (0)
LT
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
KK
Xem chi tiết
KK
23 tháng 2 2017 lúc 18:57

Giúp mình với nha.

Bình luận (0)
NT
23 tháng 2 2017 lúc 19:16

ko pit mà giúp 

Bình luận (0)
NT
25 tháng 3 2017 lúc 8:34

Kaitou Kid ơi k mik vs

Bình luận (0)
HN
Xem chi tiết
NM
8 tháng 9 2021 lúc 19:08

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

Bình luận (0)
MH
8 tháng 9 2021 lúc 19:09

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

Bình luận (0)
NM
8 tháng 9 2021 lúc 19:12

\(d,\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

\(\Rightarrow\)PT vô nghiệm vì 11 không phải là tổng 2 số chính phương

Bình luận (0)
VT
Xem chi tiết
PA
17 tháng 10 2016 lúc 10:02

\(x^2-6x+y^2+10y+34=-\left(4z-1\right)^2\)

\(x^2-6x+9+y^2+10y+25+\left(4z-1\right)^2=0\)

\(\left(x-3\right)^2+\left(y+5\right)^2+\left(4z-1\right)^2=0\)

\(\left[\begin{array}{nghiempt}x-3=0\\y+5=0\\4z-1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=3\\y=-5\\z=\frac{1}{4}\end{array}\right.\)

Bình luận (0)