Những câu hỏi liên quan
PH
Xem chi tiết
NT
6 tháng 1 2022 lúc 10:47

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)

Bình luận (1)
TM
Xem chi tiết
DG
31 tháng 8 2018 lúc 11:51

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Bình luận (0)
PS
Xem chi tiết
TT
25 tháng 2 2017 lúc 14:45

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\\ \Leftrightarrow a^2-2ab+b^2+b^2-2bc-c^2+c^2-2ac+a^2\\ =4a^2+4b^2+4c^2-4ab-4ac-4bc\\ \Leftrightarrow0=2a^2+2b^2+2c^2-2ab-2ac-2bc\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\Leftrightarrow\left\{\begin{matrix}\left(a-b\right)^2=0\Leftrightarrow a-b=0\Leftrightarrow a=b\\\left(a-c\right)^2=0\Leftrightarrow a-c=0\Leftrightarrow a=c\\\left(b-c\right)^2=0\Leftrightarrow b-c=0\Leftrightarrow b=c\end{matrix}\right.\)

Vậy a=b=c

Bình luận (0)
H24
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
AH
29 tháng 8 2019 lúc 0:11

Lời giải:

Áp dụng BĐT AM-GM:

\(ab\leq \frac{(a+b)^2}{4}; bc\leq \frac{(b+c)^2}{4}; ca\leq \frac{(c+a)^2}{4}\). Do đó:

\(\frac{ab}{c^2+3}+\frac{bc}{a^2+3}+\frac{ac}{b^2+3}\leq \frac{1}{4}\underbrace{\left(\frac{(a+b)^2}{c^2+3}+\frac{(b+c)^2}{a^2+3}+\frac{(c+a)^2}{b^2+3}\right)}_{M}(*)\)

Lại có, từ $a^2+b^2+c^2=3$ và áp dụng BĐT Cauchy-Schwarz suy ra:

\(M=\frac{(a+b)^2}{(a^2+c^2)+(b^2+c^2)}+\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}+\frac{(c+a)^2}{(b^2+a^2)+(b^2+c^2)}\)

\(\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{b^2+a^2}\)

\(\Leftrightarrow M\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
H24
30 tháng 8 2019 lúc 10:55

\(VT=\Sigma\frac{ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{1}{2}.\Sigma\frac{ab}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le\frac{1}{4}\left(\Sigma\frac{a^2}{a^2+c^2}+\Sigma\frac{b^2}{b^2+c^2}\right)=\frac{3}{4}\)

(tắt tí ạ, ko chắc)

Bình luận (0)
RH
Xem chi tiết
DT
Xem chi tiết
NH
10 tháng 8 2016 lúc 14:46

Hỏi đáp Toán

Bình luận (0)
LF
10 tháng 8 2016 lúc 14:48

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

Bình luận (0)
HN
10 tháng 8 2016 lúc 14:52

a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)

\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)

c) Giải tương tự câu b) , bắt đầu từ (1)

Bình luận (0)
NH
Xem chi tiết