chứng minh đa thức (x+1).(x+3).(x+5).(x+7)+15 chia hết cho (x+6)
Chứng minh đa thức f(x)=9x+1(x+3)(x+5)(x+7)+15f(x)=9x+1(x+3)(x+5)(x+7)+15 chia hết cho đa thức g(x)=x2+8x+10
Chứng minh đa thức f(x)=9x+1(x+3)(x+5)(x+7)+15 chia hết cho đa thức g(x)=x^2+8x+10
Tách hết ra rồi nhóm lại theo g(x)
Vài giây trước
Chứng minh đa thức f(x)=9x+1(x+3)(x+5)(x+7)+15f(x)=9x+1(x+3)(x+5)(x+7)+15 chia hết cho đa thức g(x)=\(x^2\)+8x+10
Chứng minh đa thức \(f\left(x\right)=9x+\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\) chia hết cho đa thức \(g\left(x\right)=x^2+8x+10\)
1. Chứng minh đa thức f(x)=(x^2+x-1)^10+(x^2-x+1)^10-2 chia hết cho x^2-2
2. Chứng minh đa thức f(x)=x^12-x^9+x^4-x+1 không có nghiệm
3. Tìm a để đa thức f(x)=2x^2+7x+6 chia hết cho đa thức g(x)=x+a
4. Với giá trị nào của m thì đa thức f(x)=x^3+x^2-2x+1+m chia hết cho g(x)=2x+1
5. Tìm a,b,c sao cho f(x)=ax^3+b^2+c chia hết cho đa thức x+1 và f(x)=x^-1 thì dư x+5
Help me pleaseeeeeeeeeeeeeeeee
Chiều mai mình nộp rồi, bạn nào giúp được câu nào thì giúp giúp mình với, làm ơnnnnnnnn
chứng minh rằng đa thức P(x)=x^10+x^5+x^3 chia hết cho đa thức Q(x)=x^2+x+1
\(\dfrac{P\left(x\right)}{Q\left(x\right)}=\dfrac{x^{10}+x^5+x^3}{x^2+x+1}\)
\(=\dfrac{x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6+x^3}{x^2+x+1}\)
\(=x^8-x^7+x^5-\dfrac{x^3\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)
=x^8-x^7+x^5-x^4+x^3
chứng minh rằng đa thức x^47+x^46+x^45+...+x^2+x+1 chia hết cho đa thức x^15+x^14+x^13+...+x^2+x+1
Tổng số hạng của đa thức bị chia là: 48 số hạng.
Tổng số hạng của đa thức chia là: 16 số hạng.
Nhóm 16 số hạng liên tiếp với nhau ta được 3 nhóm:
(x47+x46+x45+....+x34+x33)+(x32+x31+x30+...+x17+x16)+(x15+x14+x13+...+x2+x+1)= x33(x15+x14+x13+...+x2+x+1)+x16(x15+x14+x13+...+x2+x+1)+(x15+x14+x13+...+x2+x+1) = (x15+x14+x13+...+x2+x+1)(x33+x16+1) chia hết cho x15+x14+x13+...+x2+x+1
=> x47+x46+x45+....+x34+x33)+(x32+x31+x30+...+x17+x16 chia hết cho x15+x14+x13+...+x2+x+1
Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z
Chứng minh rằng với mọi x thuộc N thì M= (x+1)(x+3)(x+5)(x+7)+15 chia hết cho x+6
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x+11\right)^2-16+15=\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow M=x^4+16x^3+86x^2+176x+120\)
\(\Rightarrow M=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(\Rightarrow M=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
Sau khi phân tích đa thức M thành nhân tử, ta thấy: M chứa thừa số x + 6 nên \(M⋮\left(x+6\right)\)
Vậy với mọi \(x\inℕ\)thì\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)+\left(x+1\right)\left(x+3\right)\left(x+6\right)-\left(x+1\right)\left(x+6\right)+\)
\(\left(x+1\right).3+15\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)+\left(x+1\right)\left(x+3\right)\left(x+6\right)-\left(x+1\right)\left(x+6\right)+3\left(x+6\right)\)
\(=\left(x+6\right)\left[\left(x+1\right)\left(x+3\right)\left(x+5\right)+\left(x+1\right)\left(x+3\right)-\left(x+1\right)+3\right]\)chia hết cho x+6