TÍNH B= -1/3+1/3^2-1/3^3+.....+1/3^50-1/3^51
( Mog nhận đc câu trả lời từ mn )
1,Cho A = 1 + 3 + 32 + 33 + ...+ 350 + 351 + 352
a, Tính A ?
b, Tìm số dư khi chia cho 13
a,
`3A=3+3^3+3^3+...+3^{53}`
`3A-A=(3+3^3+3^3+...+3^{53})-(1+3+3^3+3^3+...+3^{52})`
`2A=3^{53}-1`
`A=(3^{53}-1)/2`
b,
`A=1+3+3^3+3^3+...+3^{52}`
`A=(1+3+3^2)+(3^3+3^4+3^5)+....+(3^{50}+3^{51}+3^{52})`
`A=(1+3+3^2)+3^3*(1+3+3^2)+....+3^{50}*(1+3+3^2)`
`A=(1+3+3^2)*(1+3^3+....+3^{50})`
`A=13*(1+3^3+....+3^{50})`
Do `13 \vdots 13 => A=13*(1+3^3+....+3^{50})\vdots 13 `
Vậy `A \vdots 13 `
Tính :
A=1+3+32+33+...+350
\(A=1+3+3^2+...+3^{50}\)
\(3A=3+3^2+3^3+...+3^{51}\)
\(3A-A=\left(3+3^2+3^3+...+3^{51}\right)-\left(1+3+3^2+...+3^{50}\right)\)
\(2A=3^{51}-1\)
\(A=\dfrac{3^{51}-1}{2}\)
Bài 1.Thực hiện phép tính.
a,(-96)+64
b,|-29|+(-11)
c,(-367)+(-33)
d,(-45)-30
e,(-28)-(-32)
f,(-3)+(350)+(-7)+350
g,(-1075)-(29-1075)
h,(18+29)+(158-18-29)
a) ( -96) +64
= -32
b) | -29| + ( -11)
= 29 + ( -11)
=18
c) ( -367) +(-33)
=400
d) (-45)-30
= -15
e) (-28)-(-32)
= -28 + 32
= 4
f) ( -3) + 350 + (-7) +350
= -10 + 350+350
= 340+350
= 690
g) (-1075) -(29-1075)
= -1075 -29 +1075
= (-1075+1075) -29
= 0 -29
= -29
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
rút gọn :
A=1+3+32+33+....+3100
B=1+12+24+...+2100
C=1-3+32-33+...+3100
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
Bài 1: cho A = 1 + 21 + 22 + 23 + ...... + 22007
a)Tính 2.A
b)Chứng minh A = 22006 - 1
Bài 2: cho A = 1 + 3 + 31 + 32 + 33 + 34 + 35 + 36 + 37
a)Tính 2.A
b)Chứng minh A = (38 - 1) : 2
Bài 3: cho B = 1 + 3 + 32 + ..... + 32006
a)Tính 3.B
b)Chứng minh B = (32007 - 1) : 2
Bài 4: cho C = 1 + 4 + 42 + 43 + 45 + 46
a)Tính 4.C
b)Chứng minh C = (47 - 1) : 3
Bài 5: Tính tổng
S = 1+ 2+ 22+ 23 + ...... + 22017
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
Bài 1: tính tổng dãy số sau:
A = 1+3+32+33+...+399+3100
Các bạn xem bài giải của mình nếu đúng tick cho mình nhé!
Giải
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
xin lỗi bài trên của mình làm sai
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Solution
We have: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100)
3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101
Inferred: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
So A = 3101−12
Please help me
Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5
Cho:A=1+3+32+33+34+...+32022
B=32023:2
Tính B-A
A = 1 + 3 + 32 + 33 + 34 + ... + 32022
3A = 3 + 32 + 33 + ... + 34 + ... + 32022 + 32023
3A - A = (3 + 32 + 33 + ... + 34 + 32022 + 32023) - (1 + 3+...+ 32022)
2A = 3 + 32 + 33 + 34 + ... + 32022 + 32023 - 1 - 3 - ... - 32022
2A = (3 - 3) + (32 - 32) + (34 - 34) + (32022 - 32022) + (32023 - 1)
2A = 32023 - 1
A = \(\dfrac{3^{2023}-1}{2}\)
A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\)
B - A = \(\dfrac{3^{2023}}{2}\) - (\(\dfrac{3^{2023}}{2}\) - \(\dfrac{1}{2}\))
B - A = \(\dfrac{3^{2023}}{2}\) - \(\dfrac{3^{2023}}{2}\) + \(\dfrac{1}{2}\)
B - A = \(\dfrac{1}{2}\)
Cho A = 1 + 3 + 32 + 33 +.......+ 32021 , B = 32022 : 2. Tính: B - A
Lời giải:
$A=1+3+3^2+3^3+...+3^{2021}$
$3A=3+3^2+3^3+...+3^{2022}$
$\Rightarrow 3A-A=(3+3^2+3^3+...+3^{2022}) - (1+3+3^2+3^3+...+3^{2021})$
$\Rightarrow 2A=3^{2022}-1$
$\Rightarrow A=\frac{3^{2022}-1}{2}$
$B-A=\frac{3^{2022}}{2}-\frac{3^{2022}-1}{2}=\frac{1}{2}$